Enhancing antibacterial photodynamic therapy with NIR-activated gold nanoclusters: Atomic-precision size effect on reducing bacterial biofilm formation and virulence

Chengyu Liu , Tenghui Tian , Yujia Shi , Meiqi Li , Le Hong , Jing Zhou , Jia Liu , Yuan Zhong , Xue Wang , Zhenyu Wang , Xue Bai , Lin Wang , Chunyan Li , Zhennan Wu

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e666

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e666 DOI: 10.1002/agt2.666
RESEARCH ARTICLE

Enhancing antibacterial photodynamic therapy with NIR-activated gold nanoclusters: Atomic-precision size effect on reducing bacterial biofilm formation and virulence

Author information +
History +
PDF

Abstract

Persistent biofilm infections pose a critical health threat with their relentless presence and amplified antibiotic resistance. Traditional antibacterial photodynamic therapy can inhibit bacteria extracellularly but struggles to control biofilm formation and virulence. Thus, there is an urgent need to develop photosensitizers, such as ultra-small gold nanoclusters (AuNCs), that can penetrate biofilms and internalize into bacteria. However, AuNCs still face the challenge of insufficient reactive oxygen species (ROS) production and limited near-infrared light absorption. This study develops a model of indocyanine green (ICG)-sensitized AuNCs with atomicprecision size effect. This approach achieved near-infrared light absorption while inhibiting radiation transitions, thereby regulating the generation of ROS. Notably, different-sized AuNCs (Au10NCs, Au15NCs, Au25NCs) yielded varied ROS types, resulting from different energy level distributions and electron transfer rates. ICGAu15NCs achieved a treatment efficacy of 99.94% against Staphylococcus aureus infections in vitro and significantly accelerated wound healing in vivo. Moreover, this study highlights the unique role of ICG-AuNCs in suppressing quorum sensing, virulence, and ABC transporters compared to their larger counterparts. This strategy demonstrates that atomic-precision size effect of AuNCs paves the way for innovative approaches in antibacterial photodynamic therapy for infection control.

Keywords

antibacterial photodynamic therapy / atomic-precision size effect / gold nanoclusters / reactive oxygen species

Cite this article

Download citation ▾
Chengyu Liu, Tenghui Tian, Yujia Shi, Meiqi Li, Le Hong, Jing Zhou, Jia Liu, Yuan Zhong, Xue Wang, Zhenyu Wang, Xue Bai, Lin Wang, Chunyan Li, Zhennan Wu. Enhancing antibacterial photodynamic therapy with NIR-activated gold nanoclusters: Atomic-precision size effect on reducing bacterial biofilm formation and virulence. Aggregate, 2025, 6(1): e666 DOI:10.1002/agt2.666

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Mestrovic, G. R. Aguilar, L. R. Swetschinski, K. S. Ikuta, A. P. Gray, N. D. Weaver, C. Han, E. E. Wool, A. G. Hayoon, S. I. Hay, Lancet Public Health 2022, 7, e897.

[2]

K. S. Ikuta, L. R. Swetschinski, G. R. Aguilar, F. Sharara, T. Mestrovic, A. P. Gray, N. D. Weaver, E. E. Wool, C. Han, A. G. Hayoon, Lancet 2022, 400, 2221.

[3]

R. Laxminarayan, Lancet 2022, 399, 606.

[4]

A. Uberoi, A. McCready-Vangi, E. A. Grice, Nat. Rev. Microbiol. 2024, 22, 507.

[5]

C. Uruén, G. Chopo-Escuin, J. Tommassen, R. C Mainar-Jaime, J. Arenas, Antibiotics 2020, 10, 3.

[6]

B. P. Howden, S. G. Giulieri, T. Wong Fok Lung, S. L. Baines, L. K. Sharkey, J. Y. H. Lee, A. Hachani, I. R. Monk, T. P. Stinear, Nat. Rev. Microbiol. 2023, 21, 380.

[7]

M. Kang, C. Zhou, S. Wu, B. Yu, Z. Zhang, N. Song, M. M. S. Lee, W. Xu, F.-J. Xu, D. Wang, L. Wang, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 16781.

[8]

A. Bekmukhametova, H. Ruprai, J. M. Hook, D. Mawad, J. Houang, A. Lauto, Nanoscale 2020, 12, 21034.

[9]

Y. Su, J. T. Yrastorza, M. Matis, J. Cusick, S. Zhao, G. Wang, J. Xie, Adv. Sci. 2022, 9, 2203291.

[10]

L. Cheng, B. Zhou, M. Qi, X. Sun, S. Dong, Y. Sun, B. Dong, L. Wang, Y. Yang, Chin. Chem. Lett. 2024, 35, 108648.

[11]

X. Sun, J. Sun, Y. Sun, C. Li, J. Fang, T. Zhang, Y. Wan, L. Xu, Y. Zhou, L. Wang, Adv. Funct. Mater. 2021, 31, 2101040.

[12]

M. Awad, N. Thomas, T. J. Barnes, C. A. Prestidge, J. Controlled Release 2022, 346, 300.

[13]

K. P. Rumbaugh, K. Sauer, Nat. Rev. Microbiol. 2020, 18, 571.

[14]

P. S. Stewart, J. W. Costerton, Lancet 2001, 358, 135.

[15]

K. Sauer, P. Stoodley, D. M. Goeres, L. Hall-Stoodley, M. Burmølle, P. S. Stewart, T. Bjarnsholt, Nat. Rev. Microbiol. 2022, 20, 608.

[16]

B. Yu, Q. Liu, J. Sun, X. Fu, Y. Zhang, X. Sun, Chem. Eng. J. 2024, 487, 150705.

[17]

S. Cheng, M. Qi, W. Li, W. Sun, M. Li, J. Lin, X. Bai, Y. Sun, B. Dong, L. Wang, Adv. Healthcare Mater. 2023, 12, 2202652.

[18]

X. Wu, M. Qi, C. Liu, Q. Yang, S. Li, F. Shi, X. Sun, L. Wang, C. Li, B. Dong, Theranostics 2023, 13, 2350

[19]

W. Sun, J. Sun, Q. Ding, M. Qi, J. Zhou, Y. Shi, J. Liu, M. Won, X. Sun, X. Bai, Angew. Chem. Int. Ed. 2024, 63, e202319690.

[20]

G. Yang, Z. Wang, F. Du, F. Jiang, X. Yuan, J. Y. Ying, J. Am. Chem. Soc. 2023, 145, 11879.

[21]

Z. Pang, N. Ren, Y. Wu, J. Qi, F. Hu, Y. Guo, Y. Xie, D. Zhou, X. Jiang, Adv. Mater. 2023, 35, 2303562.

[22]

H. Shan, J. Shi, T. Chen, Y. Cao, Q. Yao, H. An, Z. Yang, Z. Wu, Z. Jiang, J. Xie, ACS Nano 2023, 17, 2368.

[23]

K. Zheng, M. I. Setyawati, D. T. Leong, J. Xie, Nano Res. 2021, 14, 1026.

[24]

K. Zheng, M. I. Setyawati, D. T. Leong, J. Xie, Bioact. Mater. 2021, 6, 941.

[25]

G. B. Hwang, H. Huang, G. Wu, J. Shin, A. Kafizas, K. Karu, H. D. Toit, A. M. Alotaibi, L. Mohammad-Hadi, E. Allan, Nat. Commun. 2020, 11, 1207.

[26]

V. Poderys, G. Jarockyte, S. Bagdonas, V. Karabanovas, R. Rotomskis, J. Photochem. Photobiol., B 2020, 204, 111802.

[27]

G. Yang, X. Pan, W. Feng, Q. Yao, F. Jiang, F. Du, X. Zhou, J. Xie, X. Yuan, ACS Nano 2023, 17, 15605.

[28]

Y. Xie, W. Zheng, X. Jiang, ACS Appl. Mater. Interfaces 2020, 12, 9041.

[29]

K. Zheng, S. Li, L. Jing, P. Y. Chen, J. Xie, Adv. Healthcare Mater. 2020, 9, 2001007.

[30]

X. Jiang, B. Du, J. Zheng, Nat. Nanotechnol. 2019, 14, 874.

[31]

Y. Negishi, K. N. Tsukuda, J. Am. Chem. Soc. 2005, 127, 5261.

[32]

K. S. Maiti, Chem. Phys. 2018, 515, 509.

[33]

Á. Fernández-Galiana, O. Bibikova, S. Vilms Pedersen, M. M. Stevens, Adv. Mater. 2023, 33, 2210807.

[34]

X. Li, Q. Zhang, J. Yu, Y. Xu, R. Zhang, C. Wang, H. Zhang, S. Fabiano, X. Liu, J. Hou, Nat. Commun. 2022, 13, 2046.

[35]

W. R. Kitzmann, K. Heinze, Angew. Chem. Int. Ed. 2023, 62, e202213207.

[36]

N. Rehmat, A. Toffoletti, Z. Mahmood, X. Zhang, J. Zhao, A. Barbon, J. Mater. Chem. C 2020, 8, 4701.

[37]

B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 2023, 62, e202313172.

[38]

M. Li, Y. Zhao, J. Guo, X. Qin, Q. Zhang, C. Tian, P. Xu, Y. Li, W. Tian, X. Zheng, Nano-Micro Lett. 2023, 15, 119.

[39]

V. Choi, J. L. Rohn, P. Stoodley, D. Carugo, E. Stride, Nat. Rev. Microbiol. 2023, 21, 555.

[40]

Q. Yang, X. Sun, Q. Ding, M. Qi, C. Liu, T. Li, F. Shi, L. Wang, C. Li, J. S. Kim, Natl. Sci. Rev. 2024, 11, nwae225.

[41]

Z. Che, Z. Zhou, S.-Q. Li, L. Gao, J. Xiao, N.-K. Wong, Trends Mol. Med. 2023, 29, 951.

[42]

H. C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, S. Kjelleberg, Nat. Rev. Microbiol. 2016, 14, 563.

[43]

K. Saito, H. Kratzat, A. Campbell, R. Buschauer, A. M. Burroughs, O. Berninghausen, L. Aravind, R. Green, R. Beckmann, A. R. Buskirk, Nature 2022, 603, 503.

[44]

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, Nucleic Acids Res. 2017, 45, D353.

[45]

W. Luo, M. S. Friedman, K. Shedden, K. D. Hankenson, P. J. Woolf, BMC Bioinf. 2009, 10, 161.

[46]

X. Pan, H. Liang, X. Zhao, Q. Zhang, L. Chen, Z. Yue, L. Yin, Y. Jin, F. Bai, Z. Cheng, Nucleic Acids Res. 2023, 51, 2691.

[47]

M. J. Sibbald, T. Winter, M. M. van der Kooi-Pol, G. Buist, E. Tsompanidou, T. Bosma, T. Schäfer, K. Ohlsen, M. Hecker, H. Antelmann, J. Bacteriol. 2010, 192, 3788.

[48]

X. Yang, T. Hu, J. Liang, Z. Xiong, Z. Lin, Y. Zhao, X. Zhou, Y. Gao, S. Sun, X. Yang, L.W. Guddat, H. Yang, Z. Rao, B. Zhang, Nat. Struct. Mol. Biol. 2024, 31, 1072.

[49]

M. I. Goncheva, R. M. Gibson, A. C. Shouldice, J. D. Dikeakos, D. E. Heinrichs, iScience 2023, 26, 105975.

[50]

C. S. Stach, A. Herrera, P. M. Schlievert, Immunol. Res. 2014, 59, 177.

[51]

A. A. Akhtar, D. P. Turner, Microb. Pathog. 2022, 171, 105734.

[52]

A. K. Turner, M. Yasir, S. Bastkowski, A. Telatin, A. J. Page, I. G. Charles, M. A. Webber, J. Antimicrob. Chemother. 2020, 75, 3144.

[53]

P. Labroo, J. Irvin, J. Johnson, M. Sieverts, J. Miess, I. Robinson, N. Baetz, C. Garrett, N. Sopko, Skin Res. Technol. 2021, 27, 501.

[54]

Z. Gong, J. Zhang, S. Zhang, J. Cao, Y. Fu, X. Hu, J. Zhao, B. Gu, Q. Li, K. Zhang, Microb. Pathog. 2022, 169, 105671.

[55]

C. C. Cheng, S. J. Chang, Y. N. Chueh, T. S. Huang, P. H. Huang, S. M. Cheng, T. N. Tsai, J. W. Chen, H. W. Wang, BMC Genomics 2013, 14, 182.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/