Intrinsic role of alkyl side chains in disorder, aggregates, and carrier mobility of nonfullerene acceptors for organic solar cells: A multiscale theoretical study

Rongkun Zhou , Chao Li , Zihao Wen , Chen Zhang , Yijie Shi , Hao Hou , Xiaoqing Chen , Qian Kang , Yongzhe Zhang , Hui Yan , Han Yu , Yi Zhao , Zilong Zheng , He Yan

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e664

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e664 DOI: 10.1002/agt2.664
RESEARCH ARTICLE

Intrinsic role of alkyl side chains in disorder, aggregates, and carrier mobility of nonfullerene acceptors for organic solar cells: A multiscale theoretical study

Author information +
History +
PDF

Abstract

Modifications to the alkyl side chains of Y6-type nonfullerene acceptors (NFAs) continuously break through the organic solar cells (OSCs) efficiency by enhancing electron mobility. However, the role of side chains in molecular aggregation and charge transport across different aggregates remains unclear. By employing a multiscale approach in combination with density functional theory (DFT), molecular dynamics (MD) simulations, and kinetic Monte Carlo (KMC), we addressed the issue of how side chains impact molecular aggregation, energy disorder, and the formation of near-macroscopic (∼0.3 µm) conductive network, which are critical for boosting electron mobility. Specifically, the side-chain structure greatly influences the un-conjugated enveloping effect on backbones within aggregates. The effect diminishes with longer linear side chains and is further minimized by using branched side chains. Though static energy disorder increased, the improved connectivity of the conductive network led to a notable increase in electron mobility (from 2.4 × 10–4 to 3.9 × 10–4 cm2·V–1·s–1). The findings offer insight into controlling molecular aggregation via alkyl side chains, which helps to further unlock the potential of Y6-type NFAs.

Keywords

acceptors / aggregates / carrier mobility / conductive network / organic solar cells

Cite this article

Download citation ▾
Rongkun Zhou, Chao Li, Zihao Wen, Chen Zhang, Yijie Shi, Hao Hou, Xiaoqing Chen, Qian Kang, Yongzhe Zhang, Hui Yan, Han Yu, Yi Zhao, Zilong Zheng, He Yan. Intrinsic role of alkyl side chains in disorder, aggregates, and carrier mobility of nonfullerene acceptors for organic solar cells: A multiscale theoretical study. Aggregate, 2025, 6(2): e664 DOI:10.1002/agt2.664

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. M. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumuller, C. Brabec, P. Meredith, Adv. Energy Mater. 2021, 11, 2003570.

[2]

G. Zhang, F. R. Lin, F. Qi, T. Heumuller, A. Distler, H. J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K. Jen, H. L. Yip, Chem. Rev. 2022, 122, 14180.

[3]

H. Yao, J. Hou, Angew. Chem. Int. Ed. 2022, 61, e202209021.

[4]

J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.

[5]

Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171.

[6]

Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 2024, 9, 975.

[7]

H. Lu, D. Li, W. Liu, G. Ran, H. Wu, N. Wei, Z. Tang, Y. Liu, W. Zhang, Z. Bo, Angew. Chem. Int. Ed. 2024, 63, e202407007.

[8]

M. Ans, A. Ayub, N. Alwadai, A. Rasool, M. Zahid, J. Iqbal, M. S Al-Buriahi, J. Phys. D: Appl. Phys. 2022, 55, 235501.

[9]

M. Ans, K. Ayub, S. Muhammad, J. Iqbal, Comput. Theor. Chem. 2019, 1161, 26.

[10]

M. Ans, K. Ayub, X. Xiao, J. Iqbal, J. Mol. Liq. 2020, 298, 111963.

[11]

M. Ans, J. Iqbal, B. Eliasson, M. J. saif, K. Ayub, Comput. Mater. Sci. 2019, 159, 150.

[12]

M. Ans, M. Paramasivam, K. Ayub, R. Ludwig, M. Zahid, X. Xiao, J. Iqbal, J. Mol. Liq. 2020, 305, 112829.

[13]

H. Yu, Y. Wang, C. H. Kwok, R. Zhou, Z. Yao, S. Mukherjee, A. Sergeev, H. Hu, Y. Fu, H. M. Ng, L. Chen, D. Zhang, D. Zhao, Z. Zheng, X. Lu, H. Yin, K. S. Wong, H. Ade, C. Zhang, Z. Zhu, H. Yan, Joule 2024, 8, 2304.

[14]

H. Yu, Y. Wang, X. Zou, H. Han, H. K. Kim, Z. Yao, Z. Wang, Y. Li, H. M. Ng, W. Zhou, J. Zhang, S. Chen, X. Lu, K. S. Wong, Z. Zhu, H. Yan, H. Hu, Adv. Funct. Mater. 2023, 33, 2300712.

[15]

H. Yu, Y. Wang, H. K. Kim, X. Wu, Y. Li, Z. Yao, M. Pan, X. Zou, J. Zhang, S. Chen, D. Zhao, F. Huang, X. Lu, Z. Zhu, H. Yan, Adv. Mater. 2022, 34, 2200361.

[16]

J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, J. M. Frost, Acc. Chem. Res. 2009, 42, 1768.

[17]

J. Yi, G. Zhang, H. Yu, H. Yan, Nat. Rev. Mater. 2023, 9, 46.

[18]

L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J. H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, T. McAfee, J. Zhao, X. Chen, J. L. Y. Lai, T. Ma, J. L. Bredas, H. Yan, H. Ade, Nat. Mater. 2018, 17, 253.

[19]

G. Han, Y. Yi, Z. Shuai, Adv. Energy Mater. 2018, 8, 1702743.

[20]

H. Yu, M. Pan, R. Sun, I. Agunawela, J. Zhang, Y. Li, Z. Qi, H. Han, X. Zou, W. Zhou, S. Chen, J. Y. L. Lai, S. Luo, Z. Luo, D. Zhao, X. Lu, H. Ade, F. Huang, J. Min, H. Yan, Angew. Chem. Int. Ed. 2021, 60, 10137.

[21]

Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.

[22]

X. Li, M.-A. Pan, T.-K. Lau, W. Liu, K. Li, N. Yao, F. Shen, S. Huo, F. Zhang, Y. Wu, X. Li, X. Lu, H. Yan, C. Zhan, Chem. Mater. 2020, 32, 5182.

[23]

C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, Y. Li, Energy Environ. Sci. 2020, 13, 2459.

[24]

K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan, Joule 2019, 3, 3020.

[25]

Y. Yang, Z. Liu, G. Zhang, X. Zhang, D. Zhang, Adv. Mater. 2019, 31, e1903104.

[26]

X. Bi, S. Li, T. He, H. Chen, Y. Li, X. Jia, X. Cao, Y. Guo, Y. Yang, W. Ma, Z. Yao, B. Kan, C. Li, X. Wan, Y. Chen, Small 2024, 20, 2311561.

[27]

T. Duan, J. Wang, X. Zuo, X. Bi, C. Zhong, Y. Li, Y. Long, K. Tu, W. Zhang, K. Yang, H. Zhou, X. Wan, Y. Zhao, B. Kan, Y. Chen, Mater. Horiz. 2024.

[28]

H. Yu, C. Zhao, H. Hu, S. Zhu, B. Zou, T. A. Dela Peña, H. M. Ng, C. H. Kwok, J. Yi, W. Liu, M. Li, J. Wu, G. Zhang, Y. Chen, H. Yan, Energy Environ. Sci. 2024, 17, 5191.

[29]

B. Zou, H. M. Ng, H. Yu, P. Ding, J. Yao, D. Chen, S. H. Pun, H. Hu, K. Ding, R. Ma, M. Qammar, W. Liu, W. Wu, J. Y. L. Lai, C. Zhao, M. Pan, L. Guo, J. E. Halpert, H. Ade, G. Li, H. Yan, Adv. Mater. 2024, 36, 2405404.

[30]

H. Sirringhaus, Adv. Mater. 2005, 17, 2411.

[31]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.

[32]

R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, A. Salleo, Nat. Mater. 2013, 12, 1038.

[33]

H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, Y. Liu, Adv. Mater. 2012, 24, 4618.

[34]

C. Wang, Y. Qin, Y. Sun, Y. S. Guan, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15978.

[35]

S. Chen, B. Sun, W. Hong, H. Aziz, Y. Meng, Y. Li, J. Mater. Chem. C 2014, 2, 2183.

[36]

C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C. A. Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 28, 8456.

[37]

M. Hambsch, T. Erdmann, A. R. Chew, S. Bernstorff, A. Salleo, A. Kiriy, B. Voit, S. C. B. Mannsfeld, J. Mater. Chem. C 2019, 7, 3665.

[38]

C. Zhu, L. Meng, J. Zhang, S. Qin, W. Lai, B. Qiu, J. Yuan, Y. Wan, W. Huang, Y. Li, Adv. Mater. 2021, 33, e2100474.

[39]

J. S. Park, G. U. Kim, D. Lee, S. Lee, B. Ma, S. Cho, B. J. Kim, Adv. Funct. Mater. 2020, 30, 2005787.

[40]

Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.

[41]

C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605.

[42]

S. Luo, C. Li, J. Zhang, X. Zou, H. Zhao, K. Ding, H. Huang, J. Song, J. Yi, H. Yu, K. S. Wong, G. Zhang, H. Ade, W. Ma, H. Hu, Y. Sun, H. Yan, Nat. Commun. 2023, 14, 6964.

[43]

G. Han, X. Shen, R. Duan, H. Geng, Y. Yi, J. Mater. Chem. C 2016, 4, 4654.

[44]

N. R. Tummala, Z. Zheng, S. G. Aziz, V. Coropceanu, J.-L. Bredas, J. Phys. Chem. Lett. 2015, 6, 3657.

[45]

H. F. Haneef, A. M. Zeidell, O. D. Jurchescu, J. Mater. Chem. C 2020, 8, 759.

[46]

A. S. Hassanien, A. A. Akl, J. Alloy. Compd. 2015, 648, 280.

[47]

L. Perdigón-Toro, H. Zhang, A. Markina, J. Yuan, S. M. Hosseini, C. M. Wolff, G. Zuo, M. Stolterfoht, Y. Zou, F. Gao, D. Andrienko, S. Shoaee, D. Neher, Adv. Mater. 2020, 32, 1906763.

[48]

S. M. Hosseini, N. Tokmoldin, Y.W. Lee, Y. Zou, H. Y. Woo, D. Neher, S. Shoaee, Solar RRL 2020, 4, 2000498.

[49]

T. Wang, V. Coropceanu, J.-L. Brédas, Chem. Mater. 2019, 31, 6239.

[50]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, et al, Gaussian 16 Rev. C.01. Wallingford, CT, 2016.

[51]

T. Stein, H. Eisenberg, L. Kronik, R. Baer, Phys. Rev. Lett. 2010, 105, 266802.

[52]

L. Pandey, C. Doiron, J. S. Sears, J.-L. Brédas, Phys. Chem. Chem. Phys. 2012, 14, 14243.

[53]

X. Shen, G. Han, Y. Yi, Phys. Chem. Chem. Phys. 2016, 18, 15955.

[54]

B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.

[55]

S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29, 845.

[56]

W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.

[57]

W. L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 1988, 110, 1657.

[58]

C. I. Bayly, P. Cieplak, W. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269.

[59]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[60]

H. Bässler, Phys. Stat. Sol. 1993, 175, 15.

[61]

R. A. Marcus, J. Chem. Phys. 1956, 24, 966.

[62]

A. A. Voityuk, N. Rosch, J. Chem. Phys. 2002, 117, 5607.

[63]

Z. Cao, S. Yang, B. Wang, X. Shen, G. Han, Y. Yi, J. Mater. Chem. A 2020, 8, 20408.

[64]

T. Wang, J. L. Brédas, Adv. Funct. Mater. 2019, 29, 1806845.

[65]

J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, X. Y. Hou, Phys. Rev. B 2007, 75, 153201.

[66]

J. J. M. van der Holst, F. W. A. van Oost, R. Coehoorn, P. A. Bobbert, Phys. Rev. B 2011, 83, 085206.

[67]

H. Li, Y. Li, H. Li, J. L. Brédas, Adv. Funct. Mater. 2017, 27, 1605715.

[68]

M. Andrea, K. Kordos, E. Lidorikis, D. G. Papageorgiou, Comput. Mater. Sci. 2022, 202, 110978.

[69]

H. Uratani, S. Kubo, K. Shizu, F. Suzuki, T. Fukushima, H. Kaji, Sci. Rep. 2016, 6, 39128.

[70]

J. Ho, A. Klamt, M. L. Coote, J. Phys. Chem. A 2010, 114, 13442.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

392

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/