Droplets Cas13a-RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer

Jingsong Xu , Li Cao , Shuang Yang , Ying Jian , Yu Liu , Zhen Shen , Qian Liu , Xiang Chen , Min Li , Shun Li , Xiaolei Zuo , Min Li , Hua Wang

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e663

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e663 DOI: 10.1002/agt2.663
RESEARCH ARTICLE

Droplets Cas13a-RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer

Author information +
History +
PDF

Abstract

Colorectal cancer (CRC) is one of the most prevalent forms of cancer. CircRNAs have emerged as promising biomarkers for cancer diagnosis and prognosis evaluation. However, novel circRNAs as potential biomarkers for CRC still need further exploration and validation, and precise detection methods are yet to be developed. Herein, we report for the first time the use of droplets Cas13a to detect the circWDR37 as a biomarker of CRC. The arraystar circRNA microarray assays, functional experiments in vitro and in vivo, and qPCR were performed to discover and validate that circWDR37 is a biomarker for early screening and prognosis evaluation of CRC. A new technology named µDCR, which accurately detects circWDR37, has been developed by combining microfluidic droplets with CRISPR/Cas13a and recombinase polymerase amplification (RPA). Meanwhile, the role of crowding agent in improving the performance of Cas13a was uncovered. The 4% polyethylene glycol 8000 and 3% dextran-10 significantly improved the response speed and sensitivity of one-pot Cas13a-RPA reaction. The detection limit of circWDR37 by µDCR was found to be 10 copies/mL, which is higher than that of qPCR. The clinical sample findings demonstrated that circWDR37 detection can be utilized to effectively screen for CRC at an early stage and enable accurate assessment of prognosis. CircWDR37 is confirmed as a groundbreaking biomarker for both diagnosis and prognosis evaluation in CRC patients. Furthermore, our innovative µDCR method for detecting circWDR37 demonstrates impressive attributes such as streamlined operation, rapidity, and high-throughput, making it an optimal technology platform for the noninvasive screening of CRC.

Keywords

circRNA / colorectal cancer / CRISPR/Cas13a / crowding agent / droplet

Cite this article

Download citation ▾
Jingsong Xu, Li Cao, Shuang Yang, Ying Jian, Yu Liu, Zhen Shen, Qian Liu, Xiang Chen, Min Li, Shun Li, Xiaolei Zuo, Min Li, Hua Wang. Droplets Cas13a-RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer. Aggregate, 2025, 6(1): e663 DOI:10.1002/agt2.663

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Qiu, S. Cao, R. Xu, Cancer Commun. 2021, 41, 1037.

[2]

M. Arnold, M. S. Sierra, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Gut 2017, 66, 683.

[3]

R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, Ca-Cancer J. Clin. 2023, 73, 17.

[4]

S. Nikolaou, S. Qiu, F. Fiorentino, S. Rasheed, P. Tekkis, C. Kontovounisios, Tech. Coloproctol. 2018, 22, 481.

[5]

Q. Liu, J. Chen, Y. Wang, S. Li, C. Jia, J. Song, F. Li, Briefings Bioinf. 2021, 22, bbaa124.

[6]

B. Han, J. Chao, H. Yao, Pharmacol. Ther. 2018, 187, 31.

[7]

S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S. D. Mackowiak, L. H. Gregersen, M. Munschauer, A. Loewer, U. Ziebold, M. Landthaler, C. Kocks, F. Le Noble, N. Rajewsky, Nature 2013, 495, 333.

[8]

C. X. Liu, L. L. Chen, Cell 2022, 185, 2016.

[9]

L. S. Kristensen, M. S. Andersen, L. V. W. Stagsted, K. K. Ebbesen, T. B. Hansen, J. Kjems, Nat. Rev. Genet. 2019, 20, 675.

[10]

M.W. Zhang, Z. H. Zhu, Z. K. Xia, X. Yang, W. T. Luo, J. H. Ao, R. Y. Yang, Mil. Med. Res. 2021, 8, 19.

[11]

Q. Zhao, J. Liu, H. Deng, R. Ma, J. Y. Liao, H. Liang, J. Hu, J. Li, Z. Guo, J. Cai, X. Xu, Z. Gao, S. Su, Cell 2020, 183, 76.

[12]

L. S. Kristensen, T. Jakobsen, H. Hager, J. Kjems, Nat. Rev. Clin. Oncol. 2022, 19, 188.

[13]

S. P. Barrett, P. L. Wang, J. Salzman, Elife 2015, 4, e07540.

[14]

A. Das, D. Das, A. C. Panda, J. Visualized Exp. 2022, 16, 187.

[15]

Z. Mi, C. Zhongqiang, J. Caiyun, L. Yanan, W. Jianhua, L. Liang, Talanta 2022, 238, 123066.

[16]

J. S. Gootenberg, O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V. Verdine, N. Donghia, N. M. Daringer, C. A. Freije, C. Myhrvold, R. P. Bhattacharyya, J. Livny, A. Regev, E. V. Koonin, D. T. Hung, P. C. Sabeti, J. J. Collins, F. Zhang, Science 2017, 356, 438.

[17]

Y. Wang, H. Chen, K. Lin, Y. Han, Z. Gu, H. Wei, K. Mu, D. Wang, L. Liu, R. Jin, R. Song, Z. Rong, S. Wang, Nat. Commun. 2024, 15, 3279.

[18]

Z. Li, L. Hua, L. Xie, D. Wang, X. Jiang, Anal. Chem. 2023, 95, 6940.

[19]

Y. Liu, H. Liu, G. Yu, W. Sun, M. Aizaz, G. Yang, L. Chen, Anal. Chim. Acta 2023, 1278, 341757.

[20]

M. López-Valls, C. Escalona-Noguero, C. Rodríguez-Díaz, D. Pardo, M. Castellanos, P. Milán-Rois, C. Martínez-Garay, R. Coloma, M. Abreu, R. Cantón, J. C. Galán, R. Miranda, Á. Somoza, B. Sot, Anal. Chim. Acta 2022, 1205, 339749.

[21]

C. Alfano, Y. Fichou, K. Huber, M. Weiss, E. Spruijt, S. Ebbinghaus, G. De Luca, M. A. Morando, V. Vetri, P. A. Temussi, A. Pastore, Chem. Rev. 2024, 124, 3186.

[22]

S. Park, R. Barnes, Y. Lin, B. J. Jeon, S. Najafi, K. T. Delaney, G. H. Fredrickson, J. E. Shea, D. S. Hwang, S. Han, Commun. Chem. 2020, 3, 83.

[23]

A. Testa, M. Dindo, A. A. Rebane, B. Nasouri, R. W. Style, R. Golestanian, E. R. Dufresne, P. Laurino, Nat. Commun. 2021, 12, 6293.

[24]

M. Patchsung, A. Homchan, K. Aphicho, S. Suraritdechachai, T. Wanitchanon, A. Pattama, K. Sappakhaw, P. Meesawat, T. Wongsatit, A. Athipanyasilp, K. Jantarug, N. Athipanyasilp, J. Buahom, S. Visanpattanasin, N. Niljianskul, P. Chaiyen, R. Tinikul, N. Wichukchinda, S. Mahasirimongkol, R. Sirijatuphat, N. Angkasekwinai, M. A. Crone, P. S. Freemont, J. Joung, A. Ladha, O. Abudayyeh, J. Gootenberg, F. Zhang, C. Chewapreecha, S. Chanarat, N. Horthongkham, D. Pakotiprapha, C. Uttamapinant, CRISPR J. 2023, 6, 99.

[25]

R. Garcia-Martin, G. Wang, B. B. Brandão, T. M. Zanotto, S. Shah, S. Kumar Patel, B. Schilling, C. R. Kahn, Nature 2022, 601, 446.

[26]

K. H. Vousden, Cancer Cell 2002, 2, 351.

[27]

S. J. Yeung, J. Pan, M. H. Lee, Cell. Mol. Life Sci. 2008, 65, 3981.

[28]

C. Y. Yu, H. J. Liu, L. Y. Hung, H. C. Kuo, T. J. Chuang, Nucleic Acids Res. 2014, 42, 9410.

[29]

B. Bagaria, S. Sood, R. Sharma, S. Lalwani, Cancer Biol. Med. 2013, 10, 148.

[30]

U. Ladabaum, J. A. Dominitz, C. Kahi, R. E. Schoen, Gastroenterology 2020, 158, 418.

[31]

F. Ciardiello, D. Ciardiello, G. Martini, S. Napolitano, J. Tabernero, A. Cervantes, Ca-Cancer J. Clin. 2022, 72, 372.

[32]

G. Jung, E. Hernández-Illán, L. Moreira, F. Balaguer, A. Goel, Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 111.

[33]

A. N Burnett-Hartman, J. K. Lee, J. Demb, S. Gupta, Gastroenterology 2021, 160, 1041.

[34]

J. Zhou, C. Wang, G. Lin, Y. Xiao, W. Jia, G. Xiao, Q. Liu, B. Wu, A. Wu, H. Qiu, F. Zhang, K. Hu, H. Xue, Z. Shen, Z. Wang, J. Han, B. Niu, Y. Xu, Z. Yu, L. Yang, Clin. Cancer Res. 2021, 27, 301.

[35]

T. Yue, S. Chen, J. Zhu, S. Guo, Z. Huang, P. Wang, S. Zuo, Y. Liu, Aging 2021, 13, 7330.

[36]

X. Bai, H. Wei, W. Liu, O. O. Coker, H. Gou, C. Liu, L. Zhao, C. Li, Y. Zhou, G. Wang, W. Kang, E. K. Ng, J. Yu, Gut 2022, 71, 2439.

[37]

W. W. Xiao, M. Li, Z. W. Guo, R. Zhang, S. Y. Xi, X. G. Zhang, Y. Li, D. Q. Wu, Y. F. Ren, X. L. Pang, X. B. Wan, K. Li, C. L. Zhou, X.M. Zhai, Z. K. Liang, Q. X. Wang, Z. F. Zeng, H. Z. Zhang, X. X. Yang, Y. S. Wu, M. Li, Y. H. Gao, Int. J. Radiat. Oncol., Biol., Phys. 2021, 110, 482.

[38]

N. Keum, E. Giovannucci, Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713.

[39]

M. Lei, G. Zheng, Q. Ning, J. Zheng, D. Dong, Mol. Cancer 2020, 19, 30.

[40]

X. Zheng, M. Huang, L. Xing, R. Yang, X. Wang, R. Jiang, L. Zhang, J. Chen, Mol. Cancer 2020, 19, 73.

[41]

J. Du, T. Lan, H. Liao, X. Feng, X. Chen, W. Liao, G. Hou, L. Xu, Q. Feng, K. Xie, M. Liao, X. Chen, J. Huang, K. Yuan, Y. Zeng, Mol. Cancer 2022, 21, 18.

[42]

L. Zhu, H. T. Sun, S. Wang, S. L. Huang, Y. Zheng, C. Q. Wang, B. Y. Hu, W. Qin, T. T. Zou, Y. Fu, X. T. Shen, W. W. Zhu, Y. Geng, L. Lu, H. L. Jia, L. X. Qin, Q. Z. Dong, J. Hematol. Oncol. 2020, 13, 152.

[43]

D. Yu, Y. Li, M. Wang, J. Gu, W. Xu, H. Cai, X. Fang, X. Zhang, Mol. Cancer 2022, 21, 56.

[44]

H. Wu, Q. Wang, H. Zhong, L. Li, Q. Zhang, Q. Huang, Z. Yu, Oncol. Rep. 2020, 43, 240.

[45]

A. Tivey, M. Church, D. Rothwell, C. Dive, N. Cook, Nat. Rev. Clin. Oncol. 2022, 19, 600.

[46]

M. Boss, C. Arenz, Chembiochem 2020, 21, 793.

[47]

H. Yan, Y. Wen, Z. Tian, N. Hart, S. Han, S. J. Hughes, Y. Zeng, Nat. Biomed. Eng. 2023, 7, 1583.

[48]

Y. Liu, X. Zhang, M. Liu, F. Xu, Q. Zhang, Y. Zhang, X. Weng, S. Liu, Y. Du, X. Zhou, Anal. Chim. Acta 2020, 1101, 169.

[49]

P. Zhang, K. Gao, Y. Liang, F. Su, F. Wang, Z. Li, Talanta 2020, 217, 121021.

[50]

J. Jiao, Y. Xiang, C. Duan, Y. Liu, C. Li, G. Li, Anal. Chem. 2020, 92, 12394.

[51]

A. A. El Wahed, P. Patel, M. Maier, C. Pietsch, D. Ruster, S. Bohlken-Fascher, J. Kissenkotter, O. Behrmann, M. Frimpong, M. M. Diagne, M. Faye, N. Dia, M. A. Shalaby, H. Amer, M. Elgamal, A. Zaki, G. Ismail, M. Kaiser, V. M. Corman, M. Niedrig, O. Landt, O. Faye, A. A. Sall, F. T. Hufert, U. Truyen, U. G. Liebert, M. Weidmann, Anal. Chem. 2021, 93, 2627.

[52]

X. Li, L. Yang, L. L. Chen, Mol. Cell 2018, 71, 428.

[53]

J. S. Gootenberg, O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, F. Zhang, Science 2018, 360, 439.

[54]

A. Kostyusheva, S. Brezgin, Y. Babin, I. Vasilyeva, D. Glebe, D. Kostyushev, V. Chulanov, Methods 2021, 203, 431.

[55]

D. Tao, J. Liu, X. Nie, B. Xu, T. N Tran-Thi, L. Niu, X. Liu, J. Ruan, X. Lan, G. Peng, L. Sun, Y. Ma, X. Li, C. Li, S. Zhao, S. Xie, ACS Synth. Biol. 2020, 9, 2339.

[56]

T. Kang, J. Lu, T. Yu, Y. Long, G. Liu, Biosens. Bioelectron. 2022, 206, 114109.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/