A universal gelation strategy of bivalent anions to construct nanofibrous lysozyme hydrogels for immunomemory anti-recurrence of diabetic wound infection by activating the cGAS-STING pathway

Aihui Wang , Liqun Li , Liqian Zheng , Bang-Ping Jiang , Yihao Liu , Rimei Huang , Huimin Qiu , Shichen Ji , Hong Liang , Xing-Can Shen

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e662

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e662 DOI: 10.1002/agt2.662
RESEARCH ARTICLE

A universal gelation strategy of bivalent anions to construct nanofibrous lysozyme hydrogels for immunomemory anti-recurrence of diabetic wound infection by activating the cGAS-STING pathway

Author information +
History +
PDF

Abstract

Antibacterial lysozyme hydrogels show attractive advantages in wound dressings due to their intrinsic antibacterial activity and excellent biochemical and mechanical properties. Unfortunately, the development of such hydrogels is still greatly limited due to the lack of universal gelation strategies. Herein, a universal gelation strategy between lysozyme-nanofiber (LZF) and inorganic salts is proposed for the first time to construct functional nanofibrous lysozyme-based hydrogels. In particular, divalent anions are found to universally drive LZF for the aggregation and transformation into three-dimensional nanofibrous network hydrogels via electrostatic interaction, and the key role of divalent anions in the gelation is further proved by molecular dynamics simulation. In addition, near-infrared light-mediated photothermal characteristics are endowed with LZF to enhance its inhibitory activity of multidrug-resistant bacteria by the skeleton modification with genipin to produce genipin-conjuagted LZF (GLZF). As a distinct application paradigm, the brilliant immunomemory MnSO4-crosslinked GLZF hydrogel is constructed to sensitize the cGAS-STING pathway and skillfully establish an antibacterial immune microenvironment. It can excellently realize the anti-recurrence of diabetic wound infection via photo-enhanced bacterial killing and the cGAS-STING pathway. Thereby, it paves the way to employ the universal divalent anion-mediated gelation strategy for the future development of functional inorganic salt hybrid lysozyme hydrogels.

Keywords

electrostatic interaction / immunomemory hydrogel / lysozyme-nanofiber aggregation / recurrent infection / STING

Cite this article

Download citation ▾
Aihui Wang, Liqun Li, Liqian Zheng, Bang-Ping Jiang, Yihao Liu, Rimei Huang, Huimin Qiu, Shichen Ji, Hong Liang, Xing-Can Shen. A universal gelation strategy of bivalent anions to construct nanofibrous lysozyme hydrogels for immunomemory anti-recurrence of diabetic wound infection by activating the cGAS-STING pathway. Aggregate, 2025, 6(1): e662 DOI:10.1002/agt2.662

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, D. Letourneur, A. Scherberich, Mater. Today 2020, 40, 193.

[2]

K. Roy, Z. Mallick, C. O’Mahony, L. Coffey, H.D. Barnana, S. Markham, U. Sarkar, T. Solumane, E.U. Haque, D. Mandal, S.A.M. Tofail, Energy Environ. Mater. 2024, e12787.

[3]

G. Le, Y. Li, L. Cai, L. Zhang, W. Pei, X. Zhu, S. Xu, J. Zhang, J. Chen, Chem. Eng. J. 2023, 477, 146421.

[4]

J. Xiong, Y. Cao, H. Zhao, J. Chen, X. Cai, X. Li, Y. Liu, H. Xiao, J. Ge, ACS Nano 2022, 16, 19013.

[5]

H. Tan, D. Jin, X. Qu, H. Liu, X. Chen, M. Yin, C. Liu, Biomaterials 2019, 192, 392.

[6]

Y. Zhang, Y. Pan, R. Chang, K. Chen, K. Wang, H. Tan, M. Yin, C. Liu, X. Qu, Bioact. Mater. 2024, 34, 150.

[7]

J. Ouyang, Q. Bu, N. Tao, M. Chen, H. Liu, J. Zhou, J. Liu, B. Deng, Na. Kong, X. Zhang, T. Chen, Y. Cao, W. Tao, Bioact. Mater. 2022, 18, 446.

[8]

B. Hu, Y. Shen, J. Adamcik, P. Fischer, M. Schneider, M.J. Loessner, R. Mezzenga, ACS Nano 2018, 12, 3385.

[9]

W. Nong, Y. Chen, D. Lv, Y. Yan, X. Zheng, X. Shi, Z. Xu, W. Guan, J. Wu, Y. Guan, Chem. Eng. J. 2022, 431, 134003.

[10]

D. Zhang, L. Huang, D.-W. Sun, H. Pu, Q. Wei, Chem. Eng. J. 2023, 452, 139078.

[11]

T. Chen, Y. Wang, J. Xie, X. Qu, C. Liu, Biomacromolecules 2022, 23, 1376.

[12]

A. Murali, A.M. Brokesh, L.M. Cross, A.L. Kersey, M.K. Jaiswal, I. Singh, A. Gaharwar, Adv. Sci. 2024, 2402468.

[13]

J. Xiao, Y. Zhou, M. Ye, Y. An, K. Wang, Q. Wu, L. Song, J. Zhang, H. He, Q. Zhang, J. Wu, Adv. Funct. Mater. 2021, 10, 2001591.

[14]

T.T. Nguyen, P. Zhang, J. Bi, N.H. Nguyen, Y. Dang, Z. Xu, H. Wang, N. Ninan, R. Bright, T. Pham, C.K. Nguyen, Y. Sabri, M.T. Nguyen, J. Vongsvivut, Y. Zhao, K. Vasilev, V.K. Truong, Adv. Funct. Mater. 2023, 2310539.

[15]

F. Lehne, T. Pokrant, S. Parbin, G. Salinas, J. Großhans, K. Rust, J. Faix, S. Bogdan, Nat. Commun. 2022, 13, 2492.

[16]

S. Mohanty, T. Bharadwaj, D. Verma, S. Paul, Chem. Eng. J. 2023, 472, 144976.

[17]

S. Alizadeh, A. Samadikuchaksaraei, D. Jafari, G. Orive, A. Dolatshahi-Pirouz, M. Pezeshki-Modaress, M. Gholipourmalekabadi, Small 2024, 20, 2309164.

[18]

K.R.B. Lanng, E.L. Lauridsen, M.R. Jakobsen, Nat. Immunol. 2024, 25, 1144.

[19]

S. F. Erttmann, P. Swacha, K. M. Aung, B. Brindefalk, H. Jiang, A. Härtlova, B. E. Uhlin, S. N. Wai, N. O. Gekara, Immunity 2022, 55, e10.

[20]

Z. Cheng, T. Dai, X. He, Z. Zhang, F. Xie, S. Wang, L. Zhang, F. Zhou, Signal Transduct. Target. Ther. 2020, 5, 91.

[21]

G.M. Barber, Nat. Rev. Immunol. 2015, 15, 760.

[22]

Y. Gu, X.-M. Jia, Trends Microbiol. 2023, 31, 1090.

[23]

E. Movert, J.S. Bolarin, C. Valfridsson, J. Velarde, S. Skrede, M. Nekludov, O. Hyldegaard, P. Arnell, M. Svensson, A. Norrby-Teglund, K.H. Cho, E. Elhaik, M.R. Wessels, L. Råberg, F. Carlsson, Nat. Commun. 2023, 14, 4008.

[24]

X. Wang, Y. Liu, C. Xue, Y. Hu, Y. Zhao, K. Cai, M. Li, Z. Luo, Nat. Commun. 2022, 13, 5685.

[25]

S.-J. Zheng, M. Yang, J.-Q. Luo, R. Liu, J. Song, Y. Chen, J.-Z. Du, ACS Nano 2023, 17, 15905.

[26]

X. OuYang, X. Xu, Q. Qin, C. Dai, H. Wang, S. Liu, L. Hu, X. Xiong, H. Liu, D. Zhou, Adv. Mater. 2023, 35, 2304514.

[27]

K. Wang, Y. Li, X. Wang, Z. Zhang, L. Cao, X. Fan, B. Wan, F. Liu, X. Zhang, Z. He, Y. Zhou, D. Wang, J. Sun, X. Chen, Nat. Commun. 2023, 14, 2950.

[28]

K. Zhang, C. Qi, K. Cai, Adv. Mater. 2023, 35, 2205409.

[29]

E.K. White, A. Uberoi, J.T.-C. Pan, J.T. Ort, A.E. Campbell, S.M. Murga-Garrido, J.C. Harris, P. Bhanap, M. Wei, N.Y. Robles, S.E. Gardner, E.A. Grice, Sci. Adv. 2024, 10, eadj2020.

[30]

S. Pallod, R.A. Olvera, D. Ghosh, L. Rai, S. Brimo, W. DeCambra, H.G. Sant, E. Ristich, V. Singh, M.R. Abedin, N. Chang, J.L. Yarger, J.K. Lee, J. Kilbourne, J.R. Yaron, S.E. Haydel, K. Rege, Biomaterals 2024, 311, 122668.

[31]

X. Qi, E. Cai, Y. Xiang, C. Zhang, X. Ge, J. Wang, Y. Lan, H. Xu, R. Hu, J. Shen, Adv. Mater. 2023, 35, 2306632.

[32]

M.-L. Al-Hawat, K. Cherifi, L.-P. Tricou, S. Lamontagne, M. Tran, A.C.Y. Ngu, G. Manrique, N. Guirguis, A.I. Machuca-Parra, S. Matoori, Aggregate 2024, 5, e472.

[33]

F. Huang, X. Lu, Y. Yang, Y. Yang, Y. Li, L. Kuai, B. Li, H. Dong, J. Shi, Adv. Sci. 2023, 10, 2203308.

[34]

Y. Xiong, Q. Feng, L. Lu, K. Zha, T. Yu, Z. Lin, Y. Hu, A. C. Panayi, V. Nosrati-Ziahmagi, X. Chu, L. Chen, M.-A. Shahbazi, B. Mi, G. Liu, Adv. Funct. Mater. 2023, 33, 2213066.

[35]

M.G. Monaghan, R. Borah, C. Thomsen, S. Browne, Adv. Drug Delivery Rev. 2023, 203, 115120.

[36]

Y. Zhao, D. Wang, T. Qian, J. Zhang, Z. Li, Q. Gong, X. Ren, Y. Zhao, ACS Nano 2023, 17, 16854.

[37]

M. Deng, M. Zhang, R. Huang, H. Li, W. Lv, X. Lin, R. Huang, Y. Wang, Biomaterials 2022, 289, 121790.

[38]

G. Wang, Z. Lin, Y. Li, L. Chen, S. K. Reddy, Z. Hu, L. A. Garza, Adv. Drug Delivery Rev. 2023, 194, 114727.

[39]

K. McDermott, M. Fang, A.J.M. Boulton, E. Selvin, C.W. Hicks, Diabetes Care 2023, 46, 209.

[40]

K.L. Heras, I. Garcia-Orue, F. Rancan, M. Igartua, E. Santos-Vizcaino, R. Maria. Hernandez, Adv. Drug Deliver. Rev. 2024, 210, 115342.

[41]

F. Zhao, Y. Su, J. Wang, S. Romanova, D.J. DiMaio, J. Xie, S. Zhao, Adv. Mater. 2023, 35, 2208069.

[42]

Q. Tang, N. Xue, X. Ding, K.H.-Y. Tsai, J.J. Hew, R. Jiang, R. Huang, X. Cheng, X. Ding, Y.Y. Cheng, J. Chen, Y. Wang, Adv. Drug Delivery Rev. 2023, 192, 114671.

[43]

Z. Wang, X. Fu, C. Dai, B. Yang, W. Wang, C. Fan, P. Zhang, J. Sun, D. Sun, Chem. Eng. J. 2024, 480, 148271.

[44]

L. Hou, C. Tian, Y. Yan, L. Zhang, H. Zhang, Z. Zhang, ACS Nano 2020, 14, 3927.

[45]

J. Tan, M. Wang, B. Ding, P. Ma, J. Lin, Coord. Chem. Rev. 2023, 493, 215316.

[46]

P.-D. Shi, Y.-P. Xu, Z. Zhu, C. Zhou, M. Wu, Y. He, H. Zhao, L. Liu, L. Zhao, X.-F. Li, C.-F. Qin, Adv. Sci. 2023, 10, 2303615.

[47]

M. Wu, Y. Zhou, R.-C. Tang, Chem. Eng. J. 2023, 477, 146808.

[48]

S. Tarafder, J. Ghataure, D. Langford, R. Brooke, R. Kim, S.L. Eyen, J. Bensadoun, J. T. Felix, J. L. Cook, C. H. Lee, Bioact. Mater. 2023, 28, 61.

[49]

Y. Wang, J. Guo, B. Li, D. Li, Z. Meng, S.-K. Sun, Biomaterials. 2021, 279, 121179.

[50]

A. Ta, R. Ricci-Azevedo, S.O. Vasudevan, S.S. Wright, P. Kumari, M.S. Havira, M.S. Nair, V.A. Rathinam, S.K. Vanaja, Nat. Commun. 2023, 14, 2035.

[51]

X. Zhang, X.-C. Bai, Z. J. Chen, Immunity 2020, 53, 43.

[52]

H. Su, Q. Li, D. Li, H. Li, Q. Feng, X. Cao, H. Dong, Mater. Horiz. 2022, 9, 2393.

[53]

S. Jiang, C. Qiao, X. Wang, Z. Li, G. Yang, RSC Adv. 2022, 12, 3969.

[54]

L. Yang, H. Li, L. Yao, Y. Yu, G. Ma, ACS Omega 2019, 4, 8071.

[55]

H.S. Choi, Y.K. Jo, G.-N. Ahn, K.I. Joo, D.-P. Kim, H.J. Cha, Adv. Funct. Mater. 2021, 31, 2104602.

[56]

X. Ye, A.J. Capezza, S. Davoodi, X.-F. Wei, R.L. Andersson, A. Chumakov, S.V. Roth, M. Langton, F. Lundell, M.S. Hedenqvist, C. Lendel, ACS Nano 2022, 16, 12471.

[57]

A. Wang, G. Fan, H. Qi, H. Li, C. Pang, Z. Zhu, S. Ji, H. Liang, B.-P. Jiang, X.-C. Shen, Biomaterials 2022, 289, 121798.

[58]

K. Kang, S. Ye, C. Jeong, J. Jeong, Y.-S. Ye, J.-Y. Jeong, Y.-J. Kim, S. Lim, T.H. Kim, K.Y. Kim, J.U. Kim, G.I. Kim, D.H. Chun, K. Kim, J. Park, J.-H. Hong, B. Park, K. Kim, S. Jung, K. Baek, D. Cho, J. Yoo, K. Lee, H. Cheng, B.-W. Min, H.J. Kim, H. Jeon, H. Yi, T.-I. Kim, K.J. Yu, Y. Jung, Nat. Commun. 2024, 15, 10.

[59]

Z.-Q. Zhang, P.-D. Tong, L. Wang, Z.-H. Qiu, J.-A. Li, H. Li, S.-K. Guan, C.-G. Lin, H.-Y. Wang, Chem. Eng. J. 2023, 451, 139096.

[60]

D. Fisch, M.M. Pfleiderer, E. Anastasakou, G.M. Mackie, F. Wendt, X. Liu, B. Clough, S. Lara-Reyna, V. Encheva, A.P. Snijders, H. Bando, M. Yamamoto, A.D. Beggs, J. Mercer, A.R. Shenoy, B. Wollscheid, K.M. Maslowski, W.P. Galej, E.-M. Frickel, Science 2023, 382, eadg2253.

[61]

X. Liang, H. Liu, H. Chen, X. Peng, Z. Li, M. Teng, Y. Peng, J. Li, L. Ding, J. Mao, C. Chu, H. Cheng, G. Liu, Aggregate 2024, 5, e552.

[62]

M. Zhang, H. Jin, Y. Li, C. Jiao, P. Huang, Y. Bai, Z. Gong, H. Zhang, S. Liu, H. Wang, Aggregate 2023, 4, e305.

[63]

J. Kong, S. Ma, R. Chu, J. Liu, H. Yu, M. Mao, X. Ge, Y. Sun, Y. Wang, Adv. Mater. 2024, 36, 2307695.

[64]

L. Wang, H. Zhou, Q. Chen, Z. Lin, C. Jiang, X. Chen, M. Chen, L. Liu, L. Shao, X. Liu, J. Pan, J. Wu, J. Song, J. Wu, D. Zhang, Adv. Sci. 2024, 11, 2307858.

[65]

Y. Xue, K. Chen, Y. Chen, Y. Liu, J. Tang, X. Zhang, J. Liu, ACS Nano 2023, 17, 22553.

[66]

D. Pranantyo, C. K. Yeo, Y. Wu, C. Fan, X. Xu, Y. S. Yip, M. I. G. Vos, S. H. Mahadevegowda, P. L. K. Lim, L. Yang, P. T. Hammond, D. I. Leavesley, N. S. Tan, M. B Chan-Park, Nat. Commun. 2024, 15, 954.

[67]

D. Mao, F. Hu, Z. Yi, Kenry, S. Xu, S. Yan, Z. Luo, W. Wu, Z. Wang, D. Kong, X. Liu, B. Liu, Sci. Adv. 2020, 6, eabb2712.

[68]

M. Zhan, J. Qiu, Y. Fan, L. Chen, Y. Guo, Z. Wang, J. Li, J.-P. Majoral, X. Shi, Adv. Mater. 2023, 35, 2208277.

[69]

Y. Yang, K. Huang, M. Wang, Q. Wang, H. Chang, Y. Liang, Q. Wang, J. Zhao, T. Tang, S. Yang, Adv. Mater. 2021, 33, 2103593.

[70]

G. Guan, Q. Zhang, Z. Jiang, J. Liu, J. Wan, P. Jin, Q. Lv, Small 2022, 18, 220306.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/