Spin-coating fabrication of high-yield and uniform organic thin-film transistors via a primer template growth

Zhenxin Yang , Jiale Su , Junzhan Wang , Xuanhe Li , Fushun Li , Juntao Hu , Nan Chen , Zhang Tao , Delong Yang , Deng-Ke Wang , Qiang Zhu , Yuhui Liao , Zheng-Hong Lu

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e661

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e661 DOI: 10.1002/agt2.661
RESEARCH ARTICLE

Spin-coating fabrication of high-yield and uniform organic thin-film transistors via a primer template growth

Author information +
History +
PDF

Abstract

Solution coating of organic semiconductors offers great potential for achieving low-cost and high-throughput manufacturing of large-area and flexible electronics. However, the solution processability of semiconducting small molecules for fabricating uniform and reliable thin-film devices poses challenges due to the low viscosities of small-molecule solutions. Here, we report a universal approach employing a primer template (PT) to enhance the spreadability of small-molecule solutions on silicon wafers, enabling the spin-coating fabrication of uniform thin films composed of millimeter-scale grains with complete large-area coverage and well-ordered molecular packing. Using PT, we fabricated organic thin-film transistors (OTFTs) using solutions containing various small molecules such as rubrene and 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene. The device yield of all fabricated OTFTs is consistently 100% while achieving a high average mobility of 1.62 cm2 V–1 s–1 with a device-to-device variation of 7.7% measured in ambient air condition. In addition, the utilization of PT resulted in a batch-to-batch variation of 12.5% in device performance over dozens of OTFT devices. The key industrial manufacturing metrics, such as device yield, reproducibility, and performance uniformity of the PT OTFTs, are among the best for devices fabricated using solution spin-coating techniques.

Keywords

device-to-device variability / film uniformity / organic semiconductors / solution process / thin-film transistors

Cite this article

Download citation ▾
Zhenxin Yang, Jiale Su, Junzhan Wang, Xuanhe Li, Fushun Li, Juntao Hu, Nan Chen, Zhang Tao, Delong Yang, Deng-Ke Wang, Qiang Zhu, Yuhui Liao, Zheng-Hong Lu. Spin-coating fabrication of high-yield and uniform organic thin-film transistors via a primer template growth. Aggregate, 2025, 6(1): e661 DOI:10.1002/agt2.661

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Tian, Z. Zhao, F. Yan, Wearable Electronics 2024, 1, 1.

[2]

W. C. Wang, L. F. Chi, Wearable Electronics 2024, 1, 91.

[3]

D. Simatos, M. Nikolka, J. Charmet, L. J. Spalek, Z. Toprakcioglu, I. E. Jacobs, I. B. Dimov, G. Schweicher, M. J. Lee, C. M. Fernández-Posada, D. J. Howe, T. A. Hakala, L. W. Y. Roode, V. Pecunia, T. P. Sharp, W. M. Zhang, M. Alsufyani, I. McCulloch, T. P. J. Knowles, H. Sirringhaus, SmartMat 2024, e1291.

[4]

S. H. Wang, J. Xu, W. C. Wang, G. J. N. Wang, R. Rastak, F. Molina-Lopez, J.W. Chung, S. M. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, Z. A. Bao, Nature 2018, 555, 83.

[5]

M. X. Zhang, J. Sun, G. D. Zhao, Y. H. Tong, X. Wang, H. Y. Yu, P. Xue, X. L. Zhao, Q. X. Tang, Y. C. Liu, Small 2024, 20, 2311527.

[6]

J. D. Chen, W. F. Zhang, L. P. Wang, G. Yu, Adv. Mater. 2023, 35, 2210772.

[7]

G. S. Lee, H. J. Kwon, T. K. An, Y. H. Kim, Chem. Commun. 2023, 59, 4995.

[8]

A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2018, 30, 1801079.

[9]

C. H. Xu, P. He, J. Liu, A. J. Cui, H. L. Dong, Y. G. Zhen, W. Chen, W. P. Hu, Angew. Chem. Int. Ed. 2016, 55, 9519.

[10]

J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 2007, 90, 102120.

[11]

H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364.

[12]

X. T. Zhao, H. T. Zhang, J. Zhang, J. Liu, M. Lei, L. Jiang, Adv. Sci. 2023, 10, 2300483.

[13]

A. Yamamura, S. Watanabe, M. Uno, M. Mitani, C. Mitsui, J. Tsurumi, N. Isahaya, Y. Kanaoka, T. Okamoto, J. Takeya, Sci. Adv. 2018, 4, eaao5758.

[14]

M. R. Niazi, R. P. Li, E. Q. Li, A. R. Kirmani, M. Abdelsamie, Q. X. Wang, W. Y. Pan, M. M. Payne, J. E. Anthony, D. M. Smilgies, S. T. Thoroddsen, E. P. Giannelis, A. Amassian, Nat. Commun. 2015, 6, 8598.

[15]

M. Kang, H. Hwang, W. T. Park, D. Khim, J. S. Yeo, Y. Kim, Y. J. Kim, Y. Y. Noh, D. Y. Kim, ACS Appl. Mater. Interfaces 2017, 9, 2686.

[16]

P. S. Jo, D. T. Duong, J. Park, R. Sinclair, A. Salleo, Chem. Mater. 2015, 27, 3979.

[17]

H. Yoo, H. H. Choi, T. J. Shin, T. Rim, K. Cho, S. Jung, J. J. Kim, Adv. Funct. Mater. 2015, 25, 3658.

[18]

Z. W. Zhou, Q. S. Wu, S. J. Wang, Y. T. Huang, H. Guo, S. P. Feng, P. K. L. Chan, Adv. Sci. 2019, 6, 1900775.

[19]

H. L. Chen, W. N. Zhang, M. L. Li, G. He, X. F. Guo, Chem. Rev. 2020, 120, 2879.

[20]

Q. Y. Sheng, B. Y. Peng, C. Ji, H. Y. Li, Adv. Mater. 2023, 35, 2304736.

[21]

M. L. Li, M. Liu, F. Qi, F. R. Lin, A. K. Y. Jen, Chem. Rev. 2024, 124, 2138.

[22]

N. Shin, J. Kang, L. J. Richter, V.M. Prabhu, R. J. Kline, D. A. Fischer, D. M. DeLongchamp, M. F. Toney, S. K. Satija, D. J. Gundlach, B. Purushothaman, J. E. Anthony, D. Y. Yoon, Adv. Funct. Mater. 2013, 23, 366.

[23]

H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater. 2018, 17, 2.

[24]

T. R. Fielitz, C. M. Phenicie, R. J. Holmes, Cryst. Growth Des. 2017, 17, 4522.

[25]

H. W. Lin, C. L. Lin, H. H. Chang, Y. T. Lin, C. C. Wu, Y. M. Chen, R. T. Chen, Y. Y. Chien, K. T. Wong, J. App. Phys. 2004, 95, 881.

[26]

S. S. Dalal, D. M. Walters, I. Lyubimov, J. J. de Pablo, M. D. Ediger, Proc. Natl. Acad. Sci. USA 2015, 112, 4227.

[27]

H. N. Yang, S. J. He, T. Zhang, J. X. Man, Y. B. Zhao, N. Jiang, D. K. Wang, Z. H. Lu, Org. Electron. 2021, 88, 106014.

[28]

S. W. Park, J. M. Hwang, J. M. Choi, D. K. Hwang, M. S. Oh, J. H. Kim, S. Ima, Appl. Phys. Lett. 2007, 90, 153512.

[29]

Y. Li, C. Liu, A. Kumatani, P. Darmawan, T. Minari, K. Tsukagoshi, Org. Electron. 2012, 13, 264.

[30]

Y. H. Kim, J. E. Anthony, S. K. Park, Org. Electron. 2012, 13, 1152.

[31]

S. Sanda, T. Nagase, T. Kobayashi, K. Takimiya, Y. Sadamitsu, H. Naito, Org. Electron. 2018, 58, 306.

[32]

S. Sanda, R. Nakamichi, T. Nagase, T. Kobayashi, K. Takimiya, Y. Sadamitsu, H. Naito, Org. Electron. 2019, 69, 181.

[33]

F. M. Huang, Y. Xu, Z. C. Pan, W. W. Li, J. H. Chu, IEEE Electron Device Lett. 2020, 41, 1082.

[34]

H. Ren, N. Cui, Q. X. Tang, Y. H. Tong, X. L. Zhao, Y. C. Liu, Small 2018, 14, 1801020.

[35]

S. Y. Wang, X. L. Zhao, Y. H. Tong, Q. X. Tang, Y. C. Liu, Adv. Mater. Interfaces 2020, 7, 1901950.

[36]

Z. Chen, S. M. Duan, X. T. Zhang, B. W. Geng, Y. L. Xiao, J. S. Jie, H. L. Dong, L. Q. Li, W. P. Hu, Adv. Mater. 2022, 34, 2104166.

[37]

W. Deng, H. M. Lei, X. J. Zhang, F. M. Sheng, J. L. Shi, X. L. Zhang, X. Y. Liu, S. Grigorian, X. H. Zhang, J. S. Jie, Adv. Mater. 2022, 34, 2109818.

[38]

J.W. Wang, Z. Ren, J. Pan, X. F. Wu, J. S. Jie, X. H. Zhang, X. J. Zhang, Adv. Mater. 2023, 35, 2301017.

[39]

S. Y. Yoon, N. Young, P. J. van der Zaag, D. McCulloch, IEEE Electron Device Lett. 2003, 24, 22.

[40]

H. Kuriyama, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Noguchi, S. Kiyama, S. Tsuda, S. Nakano, M. Osumi, Y. Kuwano, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1992, 31, 4550.

[41]

S. S. Lee, S. Muralidharan, A. R. Woll, M. A. Loth, Z. Li, J. E. Anthony, M. Haataja, Y. L. Loo, Chem. Mater. 2012, 24, 2920.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/