Near-room-temperature π-conjugated nematic liquid crystals in molecules with a flexible seven-membered ring structure

Riki Iwai , Hiroyuki Yoshida , Yuki Arakawa , Shunsuke Sasaki , Yuuto Iida , Kazunobu Igawa , Tsuneaki Sakurai , Satoshi Suzuki , Masatoshi Tokita , Junji Watanabe , Gen-ichi Konishi

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e660

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e660 DOI: 10.1002/agt2.660
RESEARCH ARTICLE

Near-room-temperature π-conjugated nematic liquid crystals in molecules with a flexible seven-membered ring structure

Author information +
History +
PDF

Abstract

Nematic liquid crystals (NLCs), that is, fluids with optical anisotropy as well as electric- and magnetic-field responsiveness, have been widely used in commercial liquid crystal displays. Recent advancements have extended the scope of NLC molecules to large calamitic π-conjugated systems, which heralds prospects for novel applications that exploit their superior electronic or optical functionalities in, for example, electric field controlled fluorescence switch devices. However, NLC phases of such extended π-systems usually flow only at high temperatures, which hampers device applications that operate around room temperature. Here, we show near-room-temperature NLCs of a π-conjugated fluorophore by introducing a flexible cyclic structure into the mesogenic core. 3,8-Bis(4-propylphenyl)-6,7-dihydro-5H-benzo[7]annulene (DPB[7]-C3) has a nematic phase in a significantly lower temperature range (52.6–160.4°C) than the DPB[7]-C3 analog without flexible alkylene bridges, (E)-4-propyl-4′-(4-propylstyryl)-1,1′-biphenyl (248–262°C). We attribute this large decrease in the phase transition temperature to large intramolecular conformational entropies that arise from the geometric change of the cyclic structure, which involves rotational motion of single biaryl-bonds and bending motions along the long molecular axis in the thermal equilibrium state. The practical utility of these NLC molecules is demonstrated by preparing an electric-fieldresponsive large-area fluorescent switch device with a sub-millisecond response time from a mixture of 3,8-bis(4-alkylphenyl)-6,7-dihydro-5H-benzo[7]annulenes (DPB[7]-Cns).

Keywords

aggregation-induced emission / fluorescence / liquid crystal / stimuli-responsive materials / π-conjugated molecules

Cite this article

Download citation ▾
Riki Iwai, Hiroyuki Yoshida, Yuki Arakawa, Shunsuke Sasaki, Yuuto Iida, Kazunobu Igawa, Tsuneaki Sakurai, Satoshi Suzuki, Masatoshi Tokita, Junji Watanabe, Gen-ichi Konishi. Near-room-temperature π-conjugated nematic liquid crystals in molecules with a flexible seven-membered ring structure. Aggregate, 2025, 6(1): e660 DOI:10.1002/agt2.660

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Physical Properties of Liquid Crystals, Wiley-VCH, 1999.

[2]

a) G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Appl. Phys. Lett. 1968, 13, 91.b) G. H. Heilmeier, IEEE Trans. Electron Devices 1976, 23, 780.

[3]

a) M. Mitov, Adv. Mater. 2012, 24, 6206. b) G. Friedle, Ann. Phys. 1922, 9, 273.c) N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, A. P. H. J. Schenning, J. Am. Chem. Soc. 2012, 136, 7608. d) J. Hou, R. Toyoda, S. C. J. Meskers, B. L. Feringa, Angew. Chem. Int. Ed. 2022, 61, e202206310.

[4]

a) H. Coles, M. Pivnenko, Nature 2005, 436, 997.b) H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nat. Mater. 2002, 1, 64.

[5]

a) H. Coles, S. Morris, Nat. Photonics 2010, 4, 676.b) M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, G. Konishi, Adv. Mater. 2010, 22, 4473.

[6]

Y. Shi, J. Han, X. Jin, W. Miao, Y. Zhang, P. Duan, Adv. Sci. 2022, 9, 2201565.

[7]

a) P. A. Henderson, C. T. Imrie, Liq. Cryst. 2011, 38, 1407.b) M. Cestari, S. Diez-Berart, D. A. Dunmur, A. Ferrarini, M. R. de la Fuente, D. J. B. Jackson, D. O. López, G. R. Luckhurst, M. A Perez-Jubindo, R. M. Richardson, J. Salud, B. A. Timimi, H. Zimmermann, Phys. Rev. E 2011, 84, 031704. c) R. J. Mandle, Molecules 2022, 27, 2689.

[8]

C. Tschierske, D. J. Photinos, J. Mater. Chem. 2010, 20, 4263.

[9]

a) R. Giménez, D.P. Lydon, J.L. Serrano, Curr. Opin. Solid State Mater. Sci. 2002, 6, 527.b) A.-M. Giroud-Godquin, P. M. Maitlis, Angew. Chem. Int. Ed. 1991, 30, 375.c) F. Vera, J. L. Serrano, T. Sierra, Chem. Soc. Rev. 2009, 38, 781.

[10]

a) R. J. Mandle, N. Sebastián, J. Martinez-Perdiguero, A. Mertelj, Nat. Commun. 2021, 12, 4962. b) H. Nishikawa, K. Shiroshita, H. Higuchi, Y. Okumura, Y. Haseba, S. Yamamoto, K. Sago, H. Kikuchi, Adv. Mater. 2017, 29, 1702354. c) X. Chen, E. Korblova, D. Dong, X. Wei, R. Shao, L. Radzihovsky, M. A. Glaser, J. E. Maclennan, D. Bedrov, D. M. Walba, N. A. Clark, Proc. Natl. Acad. Sci. USA 2020, 117, 14021.

[11]

a) U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, I. Muševič, Science 2011, 333, 62. b) B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, I. I. Smalyukh, Nature 2013, 493, 200.c) J. Kobashi, H. Yoshida, M. Ozaki, Nat. Photonics 2016, 10, 389.

[12]

a) M. O’Neill, S. M. Kelly, Adv. Mater. 2010, 23, 566. b) N. L. Campbell, W. L. Duffy, G. I. Thomas, J. H. Wild, S.M. Kelly, K. Bartle, M. O’Neill, V. Minter, R. P. Tuffin, J. Mater. Chem. 2002, 12, 2706.c) M. P. Aldred, A. J. Eastwood, S. P. Kitney, G. J. Richards, P. Vlachos, S. M. Kelly, M. O’Neill, Liq. Cryst. 2005, 32, 1251.d) W. Bao, M. R. Billa, K. Kassireddy, M. Haro, M. J. Kelly, S. P. Kitney, M. S. Al Kalifah, P. Wei, D. Dong, M. O’Neill, S. M. Kelly, Liq. Cryst. 2010, 37, 1289.e) M. R. Billa, K. Kassireddy, M. Haro, M. S Al-Kalifah, S. M. Kelly, S. P. Kitney, M. O’Neill, Liq. Cryst. 2011, 38, 813.f) H. Iino, T. Usui, J. Hanna, Nat. Commun. 2015, 6, 6828. g) T. Kato, J. Uchida, T. Ichikawa, T. Sakamoto, Angew. Chem. Int. Ed. 2018, 57, 4355.h) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, Chem. Rev. 2005, 105, 1491.i) Y. Iida, Y. Shimomura, M. Tokita, G. Konishi, Liq. Cryst. 2024.

[13]

a) M. Salamonczyk, A. Kovarova, J. Svoboda, D. Pociecha, E. Gorecka, Appl. Phys. Lett. 2009, 95, 171901. b) Y. Tsutsui, W. Zhang, S. Ghosh, T. Sakurai, H. Yoshida, M. Ozaki, T. Akutagawa, S. Seki, Adv. Opt. Mater. 2020, 8, 1902158.

[14]

a) M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Nature 2002, 420, 759.b) Z. Zheng, H. Hu, Z. Zhang, B. Liu, M. Li, D.-H. Qu, D.-H. Tian, W.-H. Zhu, B. L. Feringa, Nat. Photonics 2022, 16, 226.c) A. H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme, E. Meijer, R. L. Selinger, D. J. Broer, Nature 2017, 546, 632.d) K. Kumar, C. Knie, D. Bléger, M. A. Peletier, H. Friedrich, S. Hecht, D. J. Broer, M. G. Debije, A. P. H. Schenning, Nat. Commun. 2016, 7, 11975. e) D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Science 2012, 336, 209.f) W. Kang, Y. Tang, X. Meng, S. Lin, X. Zhang, J. Guo, Q. Li, Angew. Chem. Int. Ed. 2023, 62, e202311486.

[15]

D. W. Bruce, K. Heyns, V. Vill, Liq. Cryst. 2001, 23, 813.

[16]

D. Demus, Mol. Cryst. Liq. Cryst. 2006, 364, 25.

[17]

D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals: Fundamentals. Wiley-VCH, 1998.

[18]

a) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.b) Q. Li, Z. Li, Adv. Sci. 2017, 4, 1600484. c) S. Suzuki, S. Sasaki, A. S. Sairi, R. Iwai, B. Z. Tang, G. Konishi, Angew. Chem. Int. Ed. 2020, 59, 9856.d) Z. Zhao, H. Zhang, Y. W. J. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 9888.e) S. Sasaki, S. Suzuki, W. M. C. Sameera, K. Igawa, K. Morokuma, G. Konishi, J. Am. Chem. Soc. 2016, 138, 8194.f) M. C. Giel, Y. Hong, Aggregate 2023, 4, e336. g) H. Wang, Q. Li, P. Alam, H. Bai, V. Bhalla, M. R. Bryce, M. Cao, C. Chen, S. Chen, X. Chen, Y. Chen, Z. Chen, D. Dang, D. Ding, S. Ding, Y. Duo, M. Gao, W. He, X. He, X. Hong, Y. Hong, J.-J. Hu, R. Hu, X. Huang, T. D. James, X. Jiang, G. Konishi, R. T. K. Kwok, J. W. Y. Lam, C. Li, et al., ACS Nano 2023, 17, 14347.

[19]

a) R. Iwai, S. Suzuki, S. Sasaki, A. S. Sairi, K. Igawa, T. Suenobu, K. Morokuma, G. Konishi, Angew. Chem. Int. Ed. 2020, 59, 10566.b) Y. Shimomura, G. Konishi, Chem. Eur. J. 2022, 28, e202201884. c) Y. Shimomura, G. Konishi, Chem. Eur. J. 2023, 29, e202301191.

[20]

a) K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739.b) K. Kawai, K. Kato, L. Peng, Y. Segawa, L. T. Scott, K. Itami, Org. Lett. 2018, 20, 1932.

[21]

K. Horiuchi, Y. Yamamura, R. Pełka, M. Sumita, S. Yasuzuka, M. Massalska-Arodz, K. Saito, J. Phys. Chem. B 2010, 114, 4870.

[22]

Gaussian 16, Revision C.01, M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2016.

[23]

Y. Mo, J. Gao, Acc. Chem. Res. 2007, 40, 113.

[24]

C. P. Brock, W. B. Schweizer, J. D. Dunitz, J. Am. Chem. Soc. 1991, 113, 9811.

[25]

a) Y. Arakawa, S. Nakajima, R. Ishige, M. Uchimura, S. Kang, G. Konishi, J. Watanabe, J. Mater. Chem. 2012, 22, 8394.b) S. Kang, S. Nakajima, Y. Arakawa, G. Konishi, J. Watanabe, J. Mater. Chem. C 2013, 1, 4222.c) Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, G. Konishi, RSC Adv. 2016, 6, 92845.

[26]

M. Hird, A. J. Seed, K. J. Toyne, J. W. Goodby, G. W. Gray, D. G. McDonnell, J. Mater. Chem. 1993, 3, 851.

[27]

a) R. Dabrowski, P. Kula, J. Herman, Crystals 2013, 3, 443.b) Y. Arakawa, S. Kang, S. Nakajima, K. Sakajiri, Y. Cho, S. Kawauchi, J. Watanabe, G. Konishi, J. Mater. Chem. C 2013, 1, 8094.c) Y. Arakawa, S. Nakajima, S. Kang, M. Shigeta, G. Konishi, J. Watanabe, J. Mater. Chem. 2012, 22, 13908.

[28]

T. Sakurai, M. Kobayashi, H. Yoshida, M. Shimizu, Crystals 2021, 11, 1105.

[29]

N. Bennis, T. Jankowski, O. Strzezysz, A. Pakua, D. C. Zografopoulos, P. Perkowski, J. M. Sánchez-Pena, J. M. López-Higuera, J. F. Algorri, Sci. Rep. 2022, 12, 14603.

[30]

S. H. Ryu, M. J. Gim, Y. J. Cha, T. J. Shin, H. Ahn, D. K. Yoon, Soft Matter 2015, 11, 8527.

[31]

a) H. Tsuji, Bull. Chem. Soc. Jpn. 2022, 95, 657. b) H. Tsuji, E. Nakamura, Acc. Chem. Res. 2019, 52, 2939.c) X. Zhu, H. Tsuji, J. T. López navarrete, J. Casado, E. Nakamura, J. Am. Chem. Soc. 2012, 134, 19254.

[32]

a) T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem. 1996, 6, 1231.b) H. Takezoe, Y. Takanishi, Jpn. J. Appl. Phys. 2006, 45, 597.c) L. E. Hough, M. Spannuth, M. Nakata, D. A. Coleman, C. D. Jones, G. Dantlgraber, C. Tschierske, J. Watanabe, E. Koerblova, D. M. Walba, J. E. Maclennan, M. A. Glaser, N. A. Clark, Science 2009, 325, 452.

[33]

a) Y. Inoue, T. Yokoyama, N. Yamasaki, A. Tai, Nature 1989, 341, 225.b) Y. Inoue, H. Ikeda, M. Kaneda, T. Sumimura, S. R. L. Everitt, J. Am. Chem. Soc. 2000, 122, 406.

[34]

a) J. Yuan, X. Lu, Q. Lu, Aggregate 2024, 5, e431. b) Y. Sawatari, Y. Shimomura, M. Takeuchi, R. Iwai, T. Tanaka, E. Tsurumaki, M. Tokita, J. Watanabe, G. Konishi, Aggregate 2024, 5, e507. c) P. Zhou, K. Han, Aggregate 2022, 3, e160. d) J. Voskuhl, M. Giese, Aggregate 2022, 3, e124. e) Z. L. Gong, Z. Q. Li, Y. M. Zhong, Aggregate 2022, 3, e177.

[35]

a) M. Gao, J. Ren, Y. Gong, M. Fang, J. Yang, Z. Li, Aggregate 2024, 5, e462. b) H. Rao, Z. Liu, M. Chen, C. Zheng, L. Xu, J. Liu, J. W. Y. Lam, B. Li, X. Yang, B. Z. Tang, Aggregate 2024, 5, e453. c) Y. Liu, X. Yang, L. Ye, H. Ma, H. Zhu, Aggregate 2023, 4, e347. d) J. Deng, Z. Zhang, P. Sang, S. Yin, S. Zhang, Y. Li, B. Yang, C. Gu, Y. Ma, Aggregate 2023, 4, e313. e) M. Shimizu, T. Sakurai. Aggregate 2022, 3, e144. f) K. Z. Gu, Z. G. Meng, X. W. Liu, Y. Wu, X. Qi, Y. R. Ren, Z. Q. Yu, B. Z. Tang, Aggregate 2023, 4, e337. g) S. Z. Cai, H. L. Ma, H. F. Shi, Z. F. An, Aggregate 2023, 4, e320.

[36]

a) T. Matsuo, K. Ikeda, S. Hayashi, Aggregate 2023, 4, e378. b) S. Hayashi, T. Koizumi, Angew. Chem. Int. Ed. 2016, 55, 2701.

[37]

a) Y. He, S. Lin, J. Guo, Q. Li, Aggregate 2021, 2, e141. b) G. Zhang, X. Cheng, Y. Wang, W. Zhang, Aggregate 2023, 4, e262. c) H. Yan, Y. He, D. Wang, T. Han, B. Z. Tang, Aggregate 2023, 4, e331. d) H. Ikebe, K. Nakao, E. Hisamura, M. F. Y. Nakayama, T. Hosokai, M. Yang, G. Liu, T. Yasuda, K. Albrecht, Aggregate 2024, 5, e405. e) S. Segawa, X. Ou, T. Shen, T. Ryu, Y. Ishii, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, K. Onda, K. Miyata, X. He, X. Liu, B. Z. Tang, Aggregate 2024, 5, e499. f) J. Kida, D. Aoki, H. Otsuka, Aggregate 2021, 2, e50. g) D. X. Du, W. J. Zhao, Y. J. Xia, S. Y. Xie, Y. Tao, Y. Q. Gao, J. Zhang, X. H. Wan, Aggregate 2023, 4, e276. h) H. Asai, M. Shibata, M. Takenaka, S. Takata, K. Hiroi, M. Ouchi, T. Terashima, Aggregate 2023, 4, e316. i) Y. Shimomura, M. Tokita, A. Kawamura, J. Watanabe, G. Konishi, Macromolecules 2023, 56, 5152.

[38]

a) K. Kato, R. Iwano, S. Tokuda, K. Yasuzawa, M. Gon, S. Ohtani, S. Furukawa, K. Tanaka, T. Ogoshi, Aggregate 2024, 5, e482.b) A. Singh, M. Kumar, V. Bhalla, Aggregate 2023, 4, e192. c) G. Y. Jiang, J. Yu, J. G. Wang, B. Z. Tang, Aggregate 2022, 3, e285. d) W. J. Guo, T. K. Peng, W. P. Zhu, S. X. Ma, G. Wang, Y. Li, B. Liu, H. Q. Peng, Aggregate 2023, 4, e297. e) T. Tanaka, A. Matsumoto, A. S. Klymchenko, E. Tsurumaki, J. Ikenouchi, G. Konishi, Adv. Sci. 2024, 11, 2308721.

[39]

a) Z. Zhao, Z. Y. Wang, J. Tavakoli, G. G. Shan, J. Y. Zhang, C. Peng, Y. Xiong, X. P. Zhang, T. S. Cheung, Y. H. Tang, B. L. Huang, Z. X. Yu, J. W. Y. Lam, B. Z. Tang, Aggregate 2021, 2, e36. b) Z. T. Zhang, Z. P. Xiong, B. Chu, Z. M. Zhang, Y. Xie, L. Wang, J. Z. Sun, H. K. Zhang, X. H. Zhang, B. Z. Tang, Aggregate 2023, 4, e278. c) T. Bai, Y. S. Zhang, L. Wang, H. X. Yan, W. H. Zhou, Aggregate 2023, 4, e267. d) X. M. Zhang, Y. H. Bai, J. W. Deng, P. F. Zhuang, H. L. Wang, Aggregate 2024, 5, e517.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/