Stimuli-responsive enaminitrile molecular switches as tunable AIEgens covering the chromaticity space, operating out-of-equilibrium, and acting as vapor sensors

Yansong Ren , Alexander Kravberg , Sheng Xie , Erik Svensson Grape , Zhen Yang , A. Ken Inge , Mingdi Yan , Olof Ramström

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e659

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e659 DOI: 10.1002/agt2.659
RESEARCH ARTICLE

Stimuli-responsive enaminitrile molecular switches as tunable AIEgens covering the chromaticity space, operating out-of-equilibrium, and acting as vapor sensors

Author information +
History +
PDF

Abstract

A family of responsive enaminitrile molecular switches showing tunable turn-on fluorescence upon switching and aggregation is reported. When activated by the addition of acid/base, isomerization around the C═C bond could be effectuated, resulting in complete and reversible switching to the E- or Z-isomers. Typical aggregation-induced emission (AIE) could be recorded for one specific state of the different switches. By subtle tailoring of the parent structure, a series of compounds with emissions covering almost the full visible color range were obtained. The switchable AIE features of the enaminitrile structures enabled their demonstration as solid-state chemosensors to detect acidic and basic vapors, where the emission displayed an “off-on-off” effect. Furthermore, switching to the Z-configuration could be driven out-of-equilibrium through transient changes in acidity while giving rise to fluorescence. Single-crystal X-ray diffraction measurements suggested a luminescence mechanism based on restriction of intramolecular rotation and an intramolecular charge transfer effect in the AIE luminogens.

Keywords

aggregation / Enaminitrile / fluorescence / responsive / switch

Cite this article

Download citation ▾
Yansong Ren, Alexander Kravberg, Sheng Xie, Erik Svensson Grape, Zhen Yang, A. Ken Inge, Mingdi Yan, Olof Ramström. Stimuli-responsive enaminitrile molecular switches as tunable AIEgens covering the chromaticity space, operating out-of-equilibrium, and acting as vapor sensors. Aggregate, 2025, 6(1): e659 DOI:10.1002/agt2.659

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H.-B. Cheng, S. Zhang, J. Qi, X.-J. Liang, J. Yoon, Adv. Mater. 2021, 33, 2007290.

[2]

S. Lin, K. G Gutierrez-Cuevas, X. Zhang, J. Guo, Q. Li, Adv. Funct. Mater. 2020, 31, 2007957.

[3]

D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot, X. Yao, N. Giuseppone, Chem. Rev. 2019, 120, 310.

[4]

M. F. Budyka, Russ. Chem. Rev. 2017, 86, 181.

[5]

S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa, D. A. Leigh, Chem. Soc. Rev. 2017, 46, 2592.

[6]

I. Aprahamian, Chem. Commun. 2017, 53, 6674.

[7]

J. P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080.

[8]

J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094.

[9]

B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060.

[10]

Q. Zhang, D. H. Qu, ChemPhysChem 2016, 17, 1759.

[11]

R. Y. Tsien, Angew. Chem. Int. Ed. 2009, 48, 5612.

[12]

M. Dudek, N. Tarnowicz-Staniak, M. Deiana, Z. Pokładek, M. Samoć, K. Matczyszyn, RSC Adv. 2020, 10, 40489.

[13]

P. Tecilla, D. Bonifazi, ChemistryOpen 2020, 9, 538.

[14]

H. Q. Peng, X. Zheng, T. Han, R. T. K. Kwok, J.W. Y. Lam, X. Huang, B. Z. Tang, J. Am. Chem. Soc. 2017, 139, 10150.

[15]

D. Zhao, T. van Leeuwen, J. Cheng, B. L. Feringa, Nat. Chem. 2017, 9, 250.

[16]

A. Lennartson, A. Roffey, K. Moth-Poulsen, Tetrahedron Lett., 2015, 56, 1457.

[17]

H. Qian, I. Aprahamian, Chem. Commun. 2015, 51, 11158.

[18]

L. A. Tatum, X. Su, I. Aprahamian, Acc. Chem. Res. 2014, 47, 2141.

[19]

D. Cameron, S. Eisler, J. Phys. Org. Chem. 2018, 31, e3858.

[20]

S. Kassem, A. T. L. Lee, D. A. Leigh, V. Marcos, L. I. Palmer, S. Pisano, Nature 2017, 549, 374.

[21]

E. R. Kay, D. A. Leigh, Angew. Chem. Int. Ed. 2015, 54, 10080.

[22]

S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081.

[23]

L. Greb, J. M. Lehn, J. Am. Chem. Soc. 2014, 136, 13114.

[24]

E. Marchi, M. Baroncini, G. Bergamini, J. V. Heyst, F. Vögtle, P. Ceroni, J. Am. Chem. Soc. 2012, 134, 15277.

[25]

M. M. Russew, S. Hecht, Adv. Mater. 2010, 22, 3348.

[26]

P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregate 2023, 4, e352.

[27]

X. Tian, L. C. Murfin, L. Wu, S. E. Lewis, T. D. James, Chem. Sci. 2021, 12, 3406.

[28]

H. Li, H. Kim, J. Han, V.-N. Nguyen, X. Peng, J. Yoon, Aggregate 2021, 2, e51.

[29]

A. C. B Rodrigues, J. S. Seixas de Melo, Top. Curr. Chem. 2021, 379, 15.

[30]

S. Xie, A. Y. H. Wong, S. Chen, B. Z. Tang, Chem. Eur. J. 2019, 25, 5824.

[31]

H. Wang, X. Ji, Z. Li, F. Huang, Adv. Mater. 2017, 29, 1606117.

[32]

J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.

[33]

R. Hu, N. L. Leung, B. Z. Tang, Chem. Soc. Rev. 2014, 43, 4494.

[34]

J. B. Birks, Photophysics of Aromatic Molecules (Wiley Monographs in Chemical Physics), John Wiley &Sons Ltd, 1970.

[35]

J. Qi, C. Chen, D. Ding, B. Z. Tang, Adv. Healthcare Mater. 2018, 7, e1800477.

[36]

M. Gao, B. Z. Tang, ACS Sensors 2017, 2, 1382.

[37]

Y. Hong, J. W. Lam, B. Z. Tang, Chem. Commun. 2009, 4332.

[38]

X. Zhang, Z. Chi, Y. Zhang, S. Liu, J. Xu, J. Mater. Chem. C 2013, 1, 3376.

[39]

L. Pan, Y. Cai, H. Wu, F. Zhou, A. Qin, Z. Wang, B. Z. Tang, Mater. Chem. Front. 2018, 2, 1310.

[40]

Y. Ren, O. Kravchenko, O. Ramström, Chem. Eur. J. 2020, 26, 15654.

[41]

Y. Ren, P. H. Svensson, O. Ramström, Angew. Chem. Int. Ed. 2018, 57, 6256.

[42]

Y. Ren, S. Xie, E. S. Grape, A. K. Inge, O. Ramström, J. Am. Chem. Soc. 2018, 140, 13640.

[43]

K. Hanson, L. Roskop, P. I. Djurovich, F. Zahariev, M. S. Gordon, M. E. Thompson, J. Am. Chem. Soc. 2010, 132, 16247.

[44]

Accession codes:2164851–2164857. Can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. https://www.ccdc.cam.ac.uk/data_request/cif; Email: data_request@ccdc.cam.ac.uk

[45]

Z. Yang, W. Qin, J. W. Y. Lam, S. Chen, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Chem. Sci. 2013, 4, 3725.

[46]

R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845.

[47]

Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899.

[48]

C.-X. Yuan, X.-T. Tao, L. Wang, J.-X. Yang, M.-H. Jiang, J. Phys. Chem. C 2009, 113, 6809.

[49]

Y. Q. Dong, J. W. Y. Lam, B. Z. Tang, J. Phys. Chem. Lett. 2015, 6, 3429.

[50]

H. Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang, Y. Wang, Adv. Mater. 2006, 18, 2369.

[51]

J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S. H. P. Sung, G. Shan, J. W. Y. Lam, Z. Shuai, B. Z. Tang, Nat. Commun. 2018, 9, 2963.

[52]

J. Yang, Y. Yan, Y. Hui, J. Huang, J. Mater. Chem. C 2017, 5, 5083.

[53]

M. Zhang, S. Yin, J. Zhang, Z. Zhou, M. L. Saha, C. Lu, P. J. Stang, Proc. Natl. Acad. Sci. USA 2017, 114, 3044.

[54]

E. Olivieri, A. Quintard, ACS Org. Inorg. Au 2022, 3, 4.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/