Cu66 nanoclusters from hierarchical square motifs: Synthesis, assembly, and catalysis

Xueli Sun , Yuchen Wang , Qingyuan Wu , Ying-Zi Han , Xuekun Gong , Xiongkai Tang , Christine M. Aikens , Hui Shen , Nanfeng Zheng

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e651

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e651 DOI: 10.1002/agt2.651
RESEARCH ARTICLE

Cu66 nanoclusters from hierarchical square motifs: Synthesis, assembly, and catalysis

Author information +
History +
PDF

Abstract

The elucidation of hierarchical assembly structure of metal nanoclusters is of fundamental importance in the context of bottom-up fabrication and functionalization. While recent studies have provided valuable insights into the multiscale assembly patterns of gold or silver-based nanoclusters, the success in achieving similar results for copper analogues has been notably limited. Herein, by virtue of a slow-ligand-release strategy, a copper nanocluster denoted as [Cu66Cl8(PPh3)8(SC2H5)32H24](SbF6)2 was synthesized, resulting in the formation of fresh hierarchical assembly structures in one-pot. The arrangement of the metal atoms within the cluster reveals an orderly of 16 Cu4 squares, representing a rare copper nanocluster comprising square motifs. Additionally, the ligands (phosphine, thiolate, and halide) coordinate to the surface of the cluster in a regiospecific manner, displaying square patterns as well. The self-assembly facilitated by the C-H···F interaction between the cluster moieties and SbF6 anions further induces the formation of three-dimensional cubes and eventually large nanocrystals. Density functional theoretical (DFT) calculations reveal that hydride atoms with low chemical shifts typically exhibit short Cu-H distances. The cluster demonstrates moderate stability and high catalytic activity in the chemoselective hydrogenation of cyclohexanone under mild conditions.

Keywords

assembly / catalytic reactions / copper / ligands / metal clusters

Cite this article

Download citation ▾
Xueli Sun, Yuchen Wang, Qingyuan Wu, Ying-Zi Han, Xuekun Gong, Xiongkai Tang, Christine M. Aikens, Hui Shen, Nanfeng Zheng. Cu66 nanoclusters from hierarchical square motifs: Synthesis, assembly, and catalysis. Aggregate, 2025, 6(1): e651 DOI:10.1002/agt2.651

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Wang, J. Q. Zhuang, J. Lynch, O. Chen, Z. L. Wang, X. R. Wang, D. LaMontagne, H. M. Wu, Z.W. Wang, Y. C. Cao, Science 2012, 338, 358.

[2]

L. Peng, H. R. Peng, W. Li, D. Y. Zhao, Nat. Protoc. 2023, 18, 1155.

[3]

K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra, L. Manna, Nat. Mater. 2011, 10, 872.

[4]

A. A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, C. B. Murray, Nature 2010, 466, 474.

[5]

Z. J. Xue, C. Yan, T. Wang, Adv. Funct. Mater. 2019, 29, 1807658.

[6]

X. Z. Yan, F. Wang, B. Zheng, F. H. Huang, Chem. Soc. Rev. 2012, 41, 6042.

[7]

Z. N. Wu, Q. F. Yao, S. Q. Zang, J. P. Xie, ACS Mater. Lett. 2019, 1, 237.

[8]

J. V. Rival, P. Mymoona, K. M. Lakshmi, Nonappa, T. Pradeep, E. S. Shibu, Small 2021, 17, e2005718.

[9]

X. Kang, M. Z. Zhu, Coord. Chem. Rev. 2019, 394, 1.

[10]

Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526.

[11]

R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346.

[12]

I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208.

[13]

S. Kenzler, C. Schrenk, A. Schnepf, Angew. Chem. Int. Ed. 2016, 56, 393.

[14]

X. Z. Lin, W. G. Ma, K. J. Sun, B. Sun, X. M. Fu, X. Q. Ren, C. Liu, J. H. Huang, J. Phys. Chem. Lett. 2020, 12, 552.

[15]

M. Qu, H. Li, L. Xie, S. Yan, J. Li, J. Wang, C. Wei, Y. Wu, X. Zhang, J. Am. Chem. Soc. 2017, 139, 12346.

[16]

Y. Horita, S. Hossain, M. Ishimi, P. Zhao, M. Sera, T. Kawawaki, S. Takano, Y. Niihori, T. Nakamura, T. Tsukuda, M. Ehara, Y. Negishi, J. Am. Chem. Soc. 2023, 145, 23533.

[17]

M. P. Maman, E. Nida Nahan, G. Suresh, A. Das, A. S. Nair, B. Pathak, S. Mandal, Nanoscale 2023, 15, 13102.

[18]

D. Yang, W. Pei, S. Zhou, J. J. Zhao, W. P. Ding, Y. Zhu, Angew. Chem. Int. Ed. 2020, 59, 1919.

[19]

H. Han, Y. Yao, A. Bhargava, Z. Wei, Z. Tang, J. Suntivich, O. Voznyy, R. D. Robinson, J. Am. Chem. Soc. 2020, 142, 14495.

[20]

H. Shen, Z. Xu, L. Wang, Y. Han, X. Liu, S. Malola, B. K. Teo, H. Häkkinen, N. F. Zheng, Angew. Chem. Int. Ed. 2021, 60, 22411.

[21]

W. Si, K. Sheng, C. Zhang, Z. Wang, S. Zhang, J. Dou, L. Feng, Z. Gao, C. Tung, D. Sun, Chem. Sci. 2022, 13, 10523.

[22]

Z. Wang, H. Su, L. Zhang, J. Dou, C. H. Tung, D. Sun, L. Zheng, ACS Nano 2022, 16, 4500.

[23]

K. Yonesato, H. Ito, H. Itakura, D. Yokogawa, T. Kikuchi, N. Mizuno, K. Yamaguchi, K. Suzuki, J. Am. Chem. Soc. 2019, 141, 19550.

[24]

C. Cerretani, H. Kanazawa, T. Vosch, J. Kondo, Angew. Chem. Int. Ed. 2019, 58, 17153.

[25]

K. Isozaki, R. Ueno, K. Ishibashi, G. Nakano, H. Z. Yin, K. Iseri, M. Sakamoto, H. Takaya, T. Teranishi, M. Nakamura, ACS Catal. 2021, 11, 13180.

[26]

L. Gao, K. C. Wei, T. Wu, J. Dong, D. Jiang, S. H. Sun, L. S. Wang, J. Am. Chem. Soc. 2022, 144, 5258.

[27]

S. Chandra, Nonappa, G. Beaune, A. Som, S. Zhou, J. Lahtinen, H. Jiang, J. V. I. Timonen, O. Ikkala, R. H. A. Ras, Adv. Opt. Mater. 2019, 7, 1900620.

[28]

Z. Qin, S. Sharma, C. Wan, S. Malola, W. Xu, H. Häkkinen, G. Li, Angew. Chem. Int. Ed. 2021, 60, 970.

[29]

L. B. Qin, F. Sun, X. S. Ma, G. Y. Ma, Y. Tang, L. K. Wang, Q. Tang, R. C. Jin, Z. H. Tang, Angew. Chem. Int. Ed. 2021, 60, 26136.

[30]

Y. Wang, X. H. Liu, Q. K. Wang, M. Quick, S. A. Kovalenko, Q. Y. Chen, N. Koch, N. Pinna, Angew. Chem. Int. Ed. 2020, 59, 7748.

[31]

T. D. Nguyen, Z. R. Jones, D. F. Leto, G. A. Wu, S. L. Scott, T. W. Hayton, Chem. Mater. 2016, 28, 8385.

[32]

H. Kim, T. Yoo, M. S. Bootharaju, J. Kim, D. Y. Chung, T. Hyeon, Adv. Sci. 2022, 9, 2104054.

[33]

K. Konishi, M. Iwasaki, Y. Shichibu, Acc. Chem. Res. 2018, 51, 3125.

[34]

T. Chen, S. Yang, J. Chai, Y. Song, J. Fan, B. Rao, H. Sheng, H. Yu, M. Zhu, Sci. Adv. 2017, 3, e1700956.

[35]

M. M. Zhang, X. Y. Dong, Z. Y. Wang, H. Y. Li, S. J. Li, X. l. Zhao, S. Q. Zang, Angew. Chem. Int. Ed. 2020, 59, 10052.

[36]

Z. N. Wu, J. L. Liu, Y. C. Li, Z. Y. Cheng, T. T. Li, H. Zhang, Z. Y. Lu, B. Yang, ACS Nano 2015, 9, 6315.

[37]

Z. N. Wu, H.W. Liu, T. T. Li, J. L. Liu, J. Yin, O. F. Mohammed, O. M. Bakr, Y. Liu, B. Yang, H. Zhang, J. Am. Chem. Soc. 2017, 139, 4318.

[38]

Z. N. Wu, C. W. Dong, Y. C. Li, H. G. Hao, H. Zhang, Z. Y. Lu, B. Yang, Angew. Chem. Int. Ed. 2013, 52, 9952.

[39]

Z. C. Wu, Y. C. Li, J. L. Liu, Z. Y. Lu, H. Zhang, B. Yang, Angew. Chem. Int. Ed. 2014, 53, 12196.

[40]

C. C. Li, S. Q. Zhang, J. Tang, R. J. Jian, Y. Xia, L. Zhao, Chem. Sci. 2022, 13, 8095.

[41]

F. Fetzer, A. Maier, M. Hodas, O. Geladari, K. Braun, A. Meixner, F. Schreiber, A. Schnepf, M. Scheele, Nat. Commun. 2020, 11, 6188.

[42]

D. Arima, M. Mitsui, J. Am. Chem. Soc. 2023, 145, 6994.

[43]

H. Yi, S. M. Han, S. Song, M. Kim, E. Sim, D. Lee, Angew. Chem. Int. Ed. 2021, 60, 22293.

[44]

T. Yoskamtorn, S. Yamazoe, R. Takahata, J. Nishigaki, A. Thivasasith, J. Limtrakul, T. Tsukuda, ACS Catal. 2014, 4, 3696.

[45]

L. Tang, A. Ma, C. M. Zhang, X. G. Liu, R. C. Jin, S. X. Wang, Angew. Chem. Int. Ed. 2021, 60, 17969.

[46]

G. Yang, Y. Xie, Y. Wang, Y. Tang, L. L. Chng, F. Jiang, F. Du, X. Zhou, J. Y. Ying, X. Yuan, Nano Res. 2023, 16, 1748.

[47]

B. Yoon, W. D. Luedtke, R. N. Barnett, J. P. Gao, A. Desireddy, B. E. Conn, T. Bigioni, U. Landman, Nat. Mater. 2014, 13, 807.

[48]

C. Zeng, Y. Chen, K. Kirschbaum, K. J. Lambright, R. Jin, Science 2016, 354, 1580.

[49]

Q. F. Yao, Y. Yu, X. Yuan, Y. Yu, D. Zhao, J. P. Xie, J. Y. Lee, Angew. Chem. Int. Ed. 2015, 54, 184.

[50]

Nonappa, T. Lahtinen, J. S. Haataja, T. R. Tero, H. Häkkinen, O. Ikkala, Angew. Chem. Int. Ed. 2016, 55, 16035.

[51]

L. Z. He, Z. B. Gan, N. Xia, L.W. Liao, Z. K. Wu, Angew. Chem. Int. Ed. 2019, 58, 9897.

[52]

H. Zhou, T. Duan, Z. Lin, T. Yang, H. Deng, S. Jin, Y. Pei, M. Zhu, Adv. Sci. 2024, 11, 2307085.

[53]

S. Chen, W. Du, C. Qin, D. Liu, L. Tang, Y. Liu, S. Wang, M. Zhu, Angew. Chem. Int. Ed. 2020, 59, 7542.

[54]

W. J. Zhang, Z. Liu, K. P. Song, C. M. Aikens, S. S. Zhang, Z. Wang, C. H. Tung, D. Sun, Angew. Chem. Int. Ed. 2021, 60, 4231.

[55]

L. Shi, L. Y. Zhu, J. Guo, L. J. Zhang, Y. N. Shi, Y. Zhang, K. Hou, Y. L. Zheng, Y. F. Zhu, J. W. Lv, S. Q. Liu, Z. Y. Tang, Angew. Chem. Int. Ed. 2017, 56, 15397.

[56]

R. W. Huang, Y. S. Wei, X. Y. Dong, X. H. Wu, C. X. Du, S. Q. Zang, T. C. W. Mak, Nat. Chem. 2017, 9, 689.

[57]

R. S. Dhayal, W. E. van Zyl, C. W. Liu, Acc. Chem. Res. 2016, 49, 86.

[58]

S. Sharma, K. K. Chakrahari, J. Saillard, C. W. Liu, Acc. Chem. Res. 2018, 51, 2475.

[59]

C. W. Dong, R. W. Huang, C. L. Chen, J. Chen, S. Nematulloev, X. R. Guo, A. Ghosh, B. Alamer, M. N. Hedhili, T. T. Isimjan, Y. Han, O. F. Mohammed, O. M. Bakr, J. Am. Chem. Soc. 2021, 143, 11026.

[60]

C. Sun, N. Mammen, S. Kaappa, P. Yuan, G. Deng, C. Zhao, J. Yan, S. Malola, K. Honkala, H. Häkkinen, B. K. Teo, N. F. Zheng, ACS Nano 2019, 13, 5975.

[61]

L. Liu, Z. Wang, Z. Wang, R. Wang, S. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2022, 61, e202205626.

[62]

R. S. Dhayal, J. Liao, S. Kahlal, X. Wang, Y. Liu, M. Chiang, W. E. van Zyl, J. Saillard, C. W. Liu, Chem. Eur. J. 2015, 21, 8369.

[63]

Y. Bao, X. Wu, B. Yin, X. Kang, Z. Lin, H. Deng, H. Yu, S. Jin, S. Chen, M. Zhu, Chem. Sci. 2022, 13, 14357.

[64]

X. Liu, D. Astruc, Coord. Chem. Rev. 2018, 359, 112.

[65]

L. Wang, X. Yan, G. Tian, Z. Xie, S. Shi, Y. Zhang, S. Li, X. Sun, J. Sun, J. He, H. Shen, Dalton Trans. 2023, 52, 3371.

[66]

J. Sun, X. Yan, L. Wang, Z. Xie, G. Tian, L. Wang, A. He, S. Li, Q. Guo, Chaolumen, J. He, H. Shen, Inorg. Chem. 2023, 62, 9005.

[67]

Q. Tang, Y. Lee, D. Y. Li, W. Choi, C. W. Liu, D. Lee, D. Jiang, J. Am. Chem. Soc. 2017, 139, 9728.

[68]

H. Shen, L. Wang, O. López-Estrada, C. Hu, Q. Wu, D. Cao, S. Malola, B. K. Teo, H. Häkkinen, N. F. Zheng, Nano Res. 2021, 14, 3303.

[69]

A. Baghdasaryan, T. Bürgi, Nanoscale 2021, 13, 6283.

[70]

C. Liu, S. Yuan, S. Wang, Z. J. Guan, D. Jiang, Q. M. Wang, Nat. Commun. 2022, 13, 2082.

[71]

H. Zhao, C. K. Zhang, B. L. Han, Z. Wang, Y. C. Liu, Q.W. Xue, C. H. Tung, D. Sun, Nat. Synth. 2024, 3, 517.

[72]

G. Dong, Z. Pan, B. Han, Y. Tao, X. Chen, G. Luo, P. Sun, C. Sun, D. Sun, Angew. Chem. Int. Ed. 2023, 62, e202302595.

[73]

C.-L. Deng, B.-L. Han, Z.-Y. Liu, Z.-H. Pan, J. He, Y.-L. Li, Z.-L. Yang, G.-G. Luo, C.-H Tung, D. Sun, L.-S. Zheng, CCS Chem. 2024, 0, 1.

[74]

T. Jia, Z. J. Guan, C. Zhang, X. Zhu, Y. Chen, Q. Zhang, Y. Yang, D. Sun, J. Am. Chem. Soc. 2023, 145, 10355.

[75]

C. Zhang, Z. Wang, W. Si, H. Chu, L. Zhou, T. T. Li, X. Huang, Z. Gao, M. Azam, C. Tung, P. Cui, D. Sun, Nat. Commun. 2023, 14, 6413.

[76]

Z. M. Zhu, Y. Zhao, H. L. Zhao, C. Liu, Y. Zhang, W.W. Fei, H. Bi, M. B. Li, Nano Lett. 2023, 23, 7508.

[77]

H. Shen, K. Kubo, S. Kume, L. M. Zhang, T. Mizuta, Dalton Trans. 2017, 46, 16199.

[78]

W. B. Yuan, H. N. Yang, C. B. Duan, X. D. Cao, J. Zhang, H. Xu, N. Sun, Y. T. Tao, W. Huang, Chem 2020, 6, 1998.

[79]

X. L. Sun, X. K. Tang, Y. L. Gao, Y. J. Zhao, Q. Y. Wu, D. X. Cao, H. Shen, Nanoscale 2023, 15, 2316.

[80]

D. Lee, R. L. Donkers, G. l. Wang, A. S. Harper, R. W. Murray, J. Am. Chem. Soc. 2004, 126, 6193.

[81]

F. Gao, Q. Chen, F. Wang, Tetrahedron Lett. 2009, 50, 5270.

[82]

A. Olivas, J. Catal. 2004, 222, 285.

[83]

Y. Kobayashi, S. Tada, M. Kondo, K. Fujiwara, H. Mizoguchi, Catal. Sci. Technol. 2022, 12, 3088.

[84]

X. Du, X. Kong, L. Chen, Catal. Commun. 2014, 45, 109.

[85]

A. Bakhtyari, A. Sakhayi, M. R. Rahimpour, S. Raeissi, A. Pac. J. Chem. Eng. 2020, 15, e2425.

[86]

H. Shen, Q. Wu, S. Malola, Y. Han, Z. Xu, R. Qin, X. Tang, Y. Chen, B. K. Teo, H. Häkkinen, N. F. Zheng, J. Am. Chem. Soc. 2022, 144, 10844.

[87]

J. Sun, X. Tang, Z. Liu, Z. Xie, B. Yan, R. Yin, C. Chaolumen, J. Zhang, W. Fang, J. Wei, H. Shen, ACS Mater. Lett. 2024, 6, 281.

[88]

X. Sun, B. Yan, X. Gong, Q. Xu, Q. Guo, H. Shen, Chem. Eur. J. 2024, 30, e202400527.

[89]

B. Yan, X. You, X. Tang, J. Sun, Q. Xu, L. Wang, Z. J. Guan, F. Li, H. Shen, Chem. Mater. 2024, 36, 1004.

[90]

X. Gong, Z. Liu, Q. Xu, L. Wang, Q. Guo, J. Zhang, Q. Li, W. Fang, H. Shen, Polyoxometalates 2025, 4, 9140072.

[91]

G. M. Sheldrick, Acta Cryst. A 2015, 71, 3.

[92]

C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.

[93]

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.

[94]

J. P. Perdew, Phys. Rev. B 1986, 33, 8822.

[95]

A. D. Becke, Phys. Rev. A 1988, 38, 3098.

[96]

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.

[97]

W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.

[98]

R. Rüger, E. van Lenthe, T. Heine, L. Visscher, J. Chem. Phys. 2016, 144, 184103.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/