General method to synthesize aggregation-induced emission molecules via carbon-sulfur bond activation

Bowei Ma , Xinyu Liang , Gu Xu , Guanghao Zhang , Lutang Zhao , Liangzhuo Ma , Wenbin Xie , Xiang Li , Qinqin Shi , Kaikai Wen , Hui Huang

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e650

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e650 DOI: 10.1002/agt2.650
RESEARCH ARTICLE

General method to synthesize aggregation-induced emission molecules via carbon-sulfur bond activation

Author information +
History +
PDF

Abstract

Poly-substituted olefins, one of the most important aggregation-induced emission luminogens (AIEgens), have garnered significant attention due to their various applications in chemical- and bio-sensing, bio-imaging, and opto-electronics. However, the synthetic methods for these olefins remain limited, impeding the progress of AIEgens. This study introduces an unprecedented cross-coupling reaction between aryl sulfonium triflates and tosylhydrazones from naturally abundant thioethers and ketones. The generality of this method is exemplified by the facile synthesis of over forty poly-substituted olefins. Importantly, the luminescent properties of these AIEgens (e.g., quantum yield and emission color) can be easily tuned by adjusting the substituents of the electrophile and nucleophile substrates, exhibiting excellent performance in bio-imaging. Notably, the mechanistic studies reveal the critical role of β-H elimination in the formation of the double bond. This contribution provides an efficient method to synthesize poly-substituted olefins, pushing forward the development of AIEgens.

Keywords

aggregation-induced emission / bio-imaging / cross-coupling reactions / C–S bond activation / polysubstituted olefins

Cite this article

Download citation ▾
Bowei Ma, Xinyu Liang, Gu Xu, Guanghao Zhang, Lutang Zhao, Liangzhuo Ma, Wenbin Xie, Xiang Li, Qinqin Shi, Kaikai Wen, Hui Huang. General method to synthesize aggregation-induced emission molecules via carbon-sulfur bond activation. Aggregate, 2025, 6(1): e650 DOI:10.1002/agt2.650

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740. b) Y. Hong, J.W. Lam, B. Z. Tang, Chem. Commun. 2009, 4332. c) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.d) D. Zhao, F. Fan, J. Cheng, Y. Zhang, K. Wong, V. G. R. Chigrinov, H. Kwok, L. Guo, B. Tang, Adv. Opt. Mater. 2015, 3, 199.e) Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J. Z. Sun, B. Z. Tang, J. Am. Chem. Soc. 2011, 133, 660.f) Y. Hong, S. Chen, C. W. T. Leung, J. W. Y. Lam, B. Z. Tang, Chem. Asian J. 2013, 8, 1806.g) Y. Hong, L. Meng, S. Chen, C. W. T. Leung, L.-T. Da, M. Faisal, D.-A. Silva, J. Liu, J. W. Y. Lam, X. Huang, J. Am. Chem. Soc. 2012, 134, 1680.h) N. Zhao, J. W. Lam, H. H. Sung, H. M. Su, I. D. Williams, K. S. Wong, B. Z. Tang, Chem. Eur. J. 2014, 20, 133. i) Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, B. Wang, J. Am. Chem. Soc. 2014, 136, 15485.j) Z. Liu, Q. Wang, Z. Zhu, M. Liu, X. Zhao, W.-H. Zhu, Chem. Commun. 2020, 11, 12755.k) Y.-L. Wang, C. Li, H.-Q. Qu, C. Fan, P.-J. Zhao, R. Tian, M.-Q. Zhu, J. Am. Chem. Soc. 2020, 142, 7497.l) Y. Zhang, Q. Wang, Z. Zhu, W. Zhao, C. Yan, Z. Liu, M. Liu, X. Zhao, H. Tian, W.-H. Zhu, CCS Chem. 2022, 4, 1619.

[2]

a) W. Chen, C. Zhang, X. Han, S. H. Liu, Y. Tan, J. Yin, J. Org. Chem. 2019, 84, 14498.b) C. F. Gomez-Duran, R. Hu, G. Feng, T. Li, F. Bu, M. Arseneault, B. Liu, E. Pena-Cabrera, B. Z. Tang, ACS Appl. Mater. Interfaces 2015, 7, 15168.

[3]

S. Li, Y. Shang, E. Zhao, R. T. K. Kwok, J. W. Y. Lam, Y. Song, B. Z. Tang, J. Mater. Chem. C 2015, 3, 3445.

[4]

A. Schreivogel, J. Maurer, R. Winter, A. Baro, S. Laschat, Eur. J. Org. Chem. 2006, 2006, 3395.

[5]

T. T. Kong, Z. Zhao, Y. Li, F. Wu, T. Jin, B. Z. Tang, J. Mater. Chem. B 2018, 6, 5986.

[6]

a) S. A. Chernyak, M. Corda, J. P. Dath, V. V. Ordomsky, A. Y. Khodakov, Chem. Soc. Rev. 2022, 51, 7994.b) K. Skowerski, J. Białecki, A. Tracz, T. K. Olszewski, Green Chem. 2014, 16, 1125.

[7]

S. Mochida, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2010, 12, 5776.

[8]

a) K. L. Dunbar, D. H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 2017, 117, 5521.b) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832.

[9]

a) Z. Li, Q. Shi, X. Ma, Y. Li, K. Wen, L. Qin, H. Chen, W. Huang, F. Zhang, Y. Lin, Nat. Commun. 2022, 13, 1. b) T. Zhu, L. Jiang, Y. Li, Z. Xie, Z. Li, L. Lv, H. Chen, Z. Zhao, L. Jiang, B. Tang, H. Huang, Angew. Chem. Int. Ed. 2019, 58, 5044.c) A. Aguilar-Aguilar, L. S. Liebeskind, E. Peña-Cabrera, J. Org. Chem. 2007, 72, 8539.

[10]

a) X. Wen, W. Xie, Y. Li, X. Ma, Z. Liu, X. Han, K. Wen, F. Zhang, Y. Lin, Q. Shi, A. Peng, H. Huang, Angew. Chem. Int. Ed. 2023, 62, e202309922. b) L. S. Liebeskind, J. Srogl, J. Am. Chem. Soc. 2000, 122, 11260.

[11]

M. Zhang, B. B. Zhang, Q. Lin, Z. Jiang, J. Zhang, Y. Li, S. Pei, X. Han, H. Xiong, X. Liang, Y. Lin, Z. Wei, F. Zhang, X. Zhang, Z. X. Wang, Q. Shi, H. Huang, Angew. Chem. Int. Ed. 2023, 62, e202306307.

[12]

a) Q. Xiao, Y. Zhang, J. Wang, Acc. Chem. Res. 2012, 46, 236.b) Z. Shao, H. Zhang, Chem. Soc. Rev. 2012, 41, 560.

[13]

J. Barluenga, C. Valdes, Angew. Chem. Int. Ed. 2011, 50, 7486.

[14]

Q. Xiao, J. Ma, Y. Yang, Y. Zhang, J. Wang, Org. Lett. 2009, 11, 4732.

[15]

R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.

[16]

a) B. Ma, Q. Shi, X. Ma, Y. Li, H. Chen, K. Wen, R. Zhao, F. Zhang, Y. Lin, Z. Wang, Angew. Chem. Int. Ed. 2022, 61, e202115969. b) H. Xiong, Q. Lin, Y. Lu, D. Zheng, Y. Li, S. Wang, W. Xie, C. Li, X. Zhang, Y. Lin, Nat. Mater. 2024, 23, 695.c) N. C. Bruno, N. Niljianskul, S. L. Buchwald, J. Org. Chem. 2014, 79, 4161.

[17]

G. T. Thomas, K. Ronda, J. S. McIndoe, Dalton Trans. 2021, 50, 15533.

[18]

A. Bruneau, M. Roche, M. Alami, S. Messaoudi, ACS Catal. 2015, 5, 1386.

[19]

a) T. Kaszás, A. Ivanov, M. Tóth, P. Ehlers, P. Langer, L. Somsák, Carbohydr. Res. 2018, 466, 30. b) Y. Liu, P. Liu, Y. Liu, Y. Wei, Chin. J. Chem. 2017, 35, 1141.

[20]

Q. Shi, X. Shi, C. Feng, Y. Wu, N. Zheng, J. Liu, X. Wu, H. Chen, A. Peng, J. Li, L. Jiang, H. Fu, Z. Xie, S. R. Marder, S. B. Blakey, H. Huang, Angew. Chem. Int. Ed. 2021, 60, 2924.

[21]

F. Huang, Z. Liu, Q. Wang, J. Lou, Z. Yu, Org. Lett. 2017, 19, 3660.

[22]

J. R. Fulton, V. K. Aggarwal, J. De Vicente, Eur. J. Org. Chem. 2005, 2005, 1479.

[23]

P. Gao, Q. Zhang, F. Chen, Org. Lett. 2022, 24, 7769.

[24]

E. Brachet, A. Hamze, J.-F. Peyrat, J.-D. Brion, M. Alami, Org. Lett. 2010, 12, 4042.

[25]

a) L. R. Adil, P. K. Iyer, Chem. Commun. 2020, 56, 7633.b) C. Wang, Y. Yu, Y. Yuan, C. Ren, Q. Liao, J. Wang, Z. Chai, Q. Li, Z. Li, Matter 2020, 2, 181.

[26]

J. Liu, L. Bu, J. Dong, Q. Zhou, Y. Geng, D. Ma, L. Wang, X. Jing, F. Wang, J. Mater. Chem. 2007, 17, 2832.

[27]

G. Chen, W. Li, T. Zhou, Q. Peng, D. Zhai, H. Li, W. Z. Yuan, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 4496.

[28]

a) B. W. Wang, K. Jiang, J. X. Li, S. H. Luo, Z. Y. Wang, H. F. Jiang, Angew. Chem. Int. Ed. 2020, 59, 2338. b) J. Zhang, E. Wang, Y. Zhou, L. Zhang, M. Chen, X. Lin, Org. Chem. Front. 2020, 7, 1490.

[29]

a) X. Sun, Y. Wang, Y. Lei, Chem. Soc. Rev. 2015, 44, 8019.b) W.-M. Wan, D. Tian, Y.-N. Jing, X.-Y. Zhang, W. Wu, H. Ren, H.-L. Bao, Angew. Chem. Int. Ed. 2018, 57, 15510.

[30]

H. Görner, Photochem. Photobiol. 2001, 73, 339.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/