Revealing enhanced dilution effect of conjugated polymers in partially miscible blends

Hongbo Chen , Ming Hu , Yuehua Zhao , Kaixuan Lyu , Yushuai Xu , Yuansheng Sun , Zhiyuan Xie , Jinying Huang , Dapeng Wang

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e649

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e649 DOI: 10.1002/agt2.649
RESEARCH ARTICLE

Revealing enhanced dilution effect of conjugated polymers in partially miscible blends

Author information +
History +
PDF

Abstract

Recent experiments have shown that hole traps could be suppressed in polymer light-emitting diodes under current stress by diluting the light-emitting conjugated polymers within an “inert” large-bandgap host material. However, it is unclear why there is an enhanced dilution effect in partially miscible blends rather than fully miscible blends, as intuition would suggest that better miscibility leads to better dilution. In this work, we propose a cascade analysis by combining multiple fluorescence microscopic techniques and all-atom molecular dynamics simulations to study the solid-to-solid dilution of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) inMEH-PPV/polystyrene (PS) blends and MEH-PPV/poly(vinylcarbazole) (PVK) blends. By varying the molecular weights of PS and PVK, we can regulate their miscibility with MEH-PPV. The results corroborate that the dilution effect is enhanced in partially miscible blends rather than fully miscible ones. This is because, in partially miscible blends undergoing phase separation, the concentration of MEH-PPV is notably decreased in the phase occupying the majority of the volume, leading to an overall greater dilution effect than in fully miscible blends. Moreover, MEH-PPV could adopt the more extended conformation in the fully miscible blend, causing a shorter intermolecular distance to further undermine the dilution effect. These findings explain the seemingly counterintuitive more effective dilution effect observed in the recently reported partially miscible blends and provide guidance for further enhancing the performance of future generations of polymer light-emitting diodes.

Keywords

conjugated polymer / dilution effect / fluorescence microscopic techniques / partially miscible / polymer blends

Cite this article

Download citation ▾
Hongbo Chen, Ming Hu, Yuehua Zhao, Kaixuan Lyu, Yushuai Xu, Yuansheng Sun, Zhiyuan Xie, Jinying Huang, Dapeng Wang. Revealing enhanced dilution effect of conjugated polymers in partially miscible blends. Aggregate, 2025, 6(1): e649 DOI:10.1002/agt2.649

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. J. Heeger, Chem. Soc. Rev. 2010, 39, 2354.

[2]

A. Garcia, R. C. Bakus, P. Zalar, C. V. Hoven, J. Z. Brzezinski, T. Q. Nguyen, J. Am. Chem. Soc. 2011, 133, 2492.

[3]

J. H. Kim, J. W. Park, Sci. Adv. 2021, 7, eabd9715.

[4]

Y. Zhang, H. Shaikh, A. J. Sneyd, J. Tian, J. Xiao, A. Blackburn, A. Rao, R. H. Friend, I. Manners, J. Am. Chem. Soc. 2021, 143, 7032.

[5]

Y. Ma, Z. Zhong, F. Peng, L. Ying, J. Xiong, J. Peng, Y. Cao, Org. Electron. 2019, 68, 103.

[6]

S. Wang, L. Sun, Y. Zheng, Y. Zhang, N. Yu, J. Yang, M. Li, W. Chen, L. He, B. Liu, M. Ni, H. Liu, M. Xu, L. Bai, J. Lin, W. Huang, Adv. Sci. 2023, 10, e2205411.

[7]

X.-C. Fan, K. Wang, Y.-Z. Shi, Y. C. Cheng, Y.-T. Lee, J. Yu, X. K. Chen, C. Adachi, X. H. Zhang, Nat. Photonics 2023, 17, 280.

[8]

J. H. Seo, E. B. Namdas, A. Gutacker, A. J. Heeger, G. C. Bazan, Adv. Funct. Mater. 2011, 21, 3667.

[9]

C. Li, A. K. Harrison, Y. Liu, Z. Zhao, C. Zeng, F. B. Dias, Z. Ren, S. Yan, M. R. Bryce, Angew. Chem. Int. Ed. 2022, 61, e202115140.

[10]

F. S. Melkonyan, W. Zhao, M. Drees, N. D. Eastham, M. J. Leonardi, M. R. Butler, Z. Chen, X. Yu, R. P. Chang, M. A. Ratner, A. F. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2016, 138, 6944.

[11]

O. Sachnik, X. Tan, D. Dou, C. Haese, N. Kinaret, K. H. Lin, D. Andrienko, M. Baumgarten, R. Graf, G. a. H. Wetzelaer, J. J. Michels, P. W. M. Blom, Nat. Mater. 2023, 22, 1114.

[12]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96.

[13]

M. Nikolka, K. Broch, J. Armitage, D. Hanifi, P. J. Nowack, D. Venkateshvaran, A. Sadhanala, J. Saska, M. Mascal, S. H. Jung, J. K. Lee, I. Mcculloch, A. Salleo, H. Sirringhaus, Nat. Commun. 2019, 10, 2122.

[14]

I. B. Dimov, M. Moser, G. G. Malliaras, I. Mcculloch, Chem. Rev. 2022, 122, 4356.

[15]

Q. Niu, R. Rohloff, G. a. H. Wetzelaer, P. W. M. Blom, N. I. Craciun, Nat. Mater. 2018, 17, 557.

[16]

P. Mark, W. Helfrich, J. Appl. Phys. 1962, 33, 205.

[17]

D. Abbaszadeh, A. Kunz, G. A. Wetzelaer, J. J. Michels, N. I. Craciun, K. Koynov, I. Lieberwirth, P. W. Blom, Nat. Mater. 2016, 15, 628.

[18]

A. Kunz, P.W.M. Blom, J. J. Michels, J. Mater. Chem. C 2017, 5, 3042.

[19]

Z. Zhang, W. Wang, Y. Jiang, Y. X. Wang, Y. Wu, J. C. Lai, S. Niu, C. Xu, C. C. Shih, C. Wang, H. Yan, L. Galuska, N. Prine, H. C. Wu, D. Zhong, G. Chen, N. Matsuhisa, Y. Zheng, Z. Yu, Y. Wang, R. Dauskardt, X. Gu, J. B. Tok, Z. Bao, Nature 2022, 603, 624.

[20]

A. Khasbaatar, Z. Xu, J.-H. Lee, G. Campillo-Alvarado, C. Hwang, B. N. Onusaitis, Y. Diao, Chem. Rev. 2023, 123, 8395.

[21]

P. J. Flory. Principles of polymer chemistry; Cornell University Press, 1953.

[22]

D. P. Wang, Y. Yuan, Y. Mardiyati, C. Bubeck, K. Koynov, Macromolecules 2013, 46, 6217.

[23]

C. Zhou, J. Yang, J. Zhao, Acta Polym. Sin. 2021, 52, 321.

[24]

D. R. Reid, N. E. Jackson, A. J. Bourque, C. R. Snyder, R. L. Jones, J. J. De Pablo, J. Phys. Chem. Lett. 2018, 9, 4802.

[25]

Z. Hu, B. Shao, G. T. Geberth, D. A. Vanden Bout, Chem. Sci. 2018, 9, 1101.

[26]

J. Clark, C. Silva, R. H. Friend, F. C. Spano, Phys. Rev. Lett. 2007, 98, 206406.

[27]

M. Wang, M. J. Ford, C. Zhou, M. Seifrid, T.-Q. Nguyen, G. C. Bazan, J. Am. Chem. Soc. 2017, 139, 17624.

[28]

N. E. Jackson, K. L. Kohlstedt, B. M. Savoie, M. Olvera De La Cruz, G. C. Schatz, L. X. Chen, M. A. Ratner, J. Am. Chem. Soc. 2015, 137, 6254.

[29]

Z. F. Yao, Z. Y. Wang, H. T. Wu, Y. Lu, Q. Y. Li, L. Zou, J. Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2020, 59, 17467.

[30]

K. S. Park, X. Luo, J. J. Kwok, A. Khasbaatar, J. Mei, Y. Diao, ACS Cent. Sci. 2023, 9, 2096.

[31]

A. Kohler, S. T. Hoffmann, H. Bassler, J. Am. Chem. Soc. 2012, 134, 11594.

[32]

R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, A. Salleo, Nat. Mater. 2013, 12, 1038.

[33]

S. T. Keene, W. Michaels, A. Melianas, T. J. Quill, E. J. Fuller, A. Giovannitti, I. Mcculloch, A. A. Talin, C. J. Tassone, J. Qin, A. Troisi, A. Salleo, J. Am. Chem. Soc. 2022, 144, 10368.

[34]

Z. Guo, D. Lee, R. D. Schaller, X. Zuo, B. Lee, T. Luo, H. Gao, L. Huang, J. Am. Chem. Soc. 2014, 136, 10024.

[35]

A. S. Stender, K. Marchuk, C. Liu, S. Sander, M. W. Meyer, E. A. Smith, B. Neupane, G. Wang, J. Li, J. X. Cheng, B. Huang, N. Fang, Chem. Rev. 2013, 113, 2469.

[36]

D. Wöll, C. Flors, Small Methods 2017, 1, 1700191.

[37]

K. Lyu, Y. Zhao, M. Zhang, J. Tang, J. Zhang, Y. Liu, X. Bian, X. Chen, H. Chen, D. P. Wang, Langmuir 2023, 39, 13534.

[38]

M. Hu, H. B. Chen, H. Wang, S. Burov, E. Barkai, D. P. Wang, ACS Nano 2023, 17, 21708.

[39]

Z. Zhang, H. B. Chen, M. Hu, D. P. Wang, J. Am. Chem. Soc. 2023, 145, 10512.

[40]

C. M. Papadakis, P. Košovan, W. Richtering, D. Wöll, Colloid Polym. Sci. 2014, 292, 2399.

[41]

J. T. King, S. Granick, Nat. Commun. 2016, 7, 11691.

[42]

A. Cadby, R. Dean, A. M. Fox, R. A. Jones, D. G. Lidzey, Nano Lett. 2005, 5, 2232.

[43]

D. Polli, G. Grancini, J. Clark, M. Celebrano, T. Virgili, G. Cerullo, G. Lanzani, Adv. Mater. 2010, 22, 3048.

[44]

R. Camacho, D. Tauber, I. G. Scheblykin, Adv. Mater. 2019, 31, e1805671.

[45]

J. Yang, H. Park, L. J. Kaufman, Angew. Chem. Int. Ed. 2018, 57, 1826.

[46]

C. Kim, H. Joung, H. J. Kim, K. Paeng, L. J. Kaufman, J. Yang, NPG Asia Mater. 2023, 15, 32.

[47]

M. Xie, M. V. Kuzimenkova, P. O. Larsson, Y. Tian, I. G. Scheblykin, Chin. J. Chem. 2023, 41, 2536.

[48]

P. A. Dalgarno, C. A. Traina, J. C. Penedo, G. C. Bazan, I. D. Samuel, J. Am. Chem. Soc. 2013, 135, 7187.

[49]

T. Stangl, P. Wilhelm, K. Remmerssen, S. Hoger, J. Vogelsang, J. M. Lupton, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E5560.

[50]

P. Y. Chen, A. Rassamesard, H. L. Chen, S. A. Chen, Macromolecules 2013, 46, 5657.

[51]

B. J. Schwartz, Annu. Rev. Phys. Chem. 2003, 54, 141.

[52]

Y. Zhao, H. Chen, S. Geng, S. Liu, D. P. Wang, Chin. J. Chem. 2023, 41, 3245.

[53]

G. J. Hedley, T. Schroder, F. Steiner, T. Eder, F. J. Hofmann, S. Bange, D. Laux, S. Hoger, P. Tinnefeld, J. M. Lupton, J. Vogelsang, Nat. Commun. 2021, 12, 1327.

[54]

T. Eder, T. Stangl, M. Gmelch, K. Remmerssen, D. Laux, S. Hoger, J. M. Lupton, J. Vogelsang, Nat. Commun. 2017, 8, 1641.

[55]

F. Schindler, J. Jacob, A. C. Grimsdale, U. Scherf, K. Müllen, J. M. Lupton, J. Feldmann, Angew. Chem. Int. Ed. 2005, 44, 1520.

[56]

H. Z. Lin, Y. X. Tian, K. Zapadka, G. Persson, D. Thomsson, O. Mirzov, P. O. Larsson, J. Widengren, I. G. Scheblykin, Nano Lett. 2009, 9, 4456.

[57]

S. Habuchi, S. Onda, M. Vacha, Phys. Chem. Chem. Phys. 2011, 13, 1743.

[58]

A. K. Thomas, J. A. Garcia, J. Ulibarri-Sanchez, J. Gao, J. K. Grey, ACS Nano 2014, 8, 10559.

[59]

G. A. Sherwood, R. Cheng, T. M. Smith, J. H. Werner, A. P. Shreve, L. A. Peteanu, J. Wildeman, J. Phys. Chem. C 2009, 113, 18851.

[60]

M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641.

[61]

A. T. Garcia, S. A. Blum, J. Am. Chem. Soc. 2022, 144, 22416.

[62]

A. K. Pearce, S. J. Parkinson, I. Akar, M. J. Derry, P. D. Topham, R. T. Mathers, V. G. Stavros, R. K. O’reilly, Macromolecules 2023, 56, 9443.

[63]

O. Eivgi, S. A. Blum, J. Am. Chem. Soc. 2022, 144, 13574.

[64]

K. Tao, J. Yang, J. Zhao, Polymer 2019, 179.

[65]

H. Langhals, T. Schlucker, J. Phys. Chem. Lett. 2022, 13, 7568.

[66]

L. A. Peteanu, G. A. Sherwood, J. H. Werner, A. P. Shreve, T. M. Smith, J. Wildeman, J. Phys. Chem. C 2011, 115, 15607.

[67]

Y. Ebihara, M. Vacha, J. Phys. Chem. B 2008, 112, 12575.

[68]

E. Collini, G. D. Scholes, Science 2009, 323, 369.

[69]

R. F. Cossiello, M. D. Susman, P. F. Aramendía, T. D. Z. Atvars, J. Lumin. 2010, 130, 415.

[70]

T. Q. Nguyen, J. Wu, V. V. Doan, B. J. Schwartz, S. H. Tolbert, Science 2000, 288, 652.

[71]

T. Qin, A. Troisi, J. Am. Chem. Soc. 2013, 135, 11247.

[72]

A. E. Cohen, N. E. Jackson, J. J. De Pablo, Macromolecules 2021, 54, 3780.

[73]

C. I. Wang, C. H. Hsu, C. C. Hua, Phys. Chem. Chem. Phys. 2017, 19, 20818.

[74]

S. Kilina, N. Dandu, E. R. Batista, A. Saxena, R. L. Martin, D. L. Smith, S. Tretiak, J. Phys. Chem. Lett. 2013, 4, 1453.

[75]

L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J.-H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, T. Mcafee, J. Zhao, X. Chen, J. L. Y. Lai, T. Ma, J.-L. Bredas, H. Yan, H. Ade, Nat. Mater. 2018, 17, 253.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/