Boosting disassembly of ππ stacked supramolecular nanodrugs under tumor microenvironment by introducing stimuli-responsive drug-mates

Wenzhe Xu , Ruixu Yang , Yingke Xue , Yang Chen , Shuwei Liu , Songling Zhang , Yonggang Wang , Yi Liu , Hao Zhang

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e648

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e648 DOI: 10.1002/agt2.648
RESEARCH ARTICLE

Boosting disassembly of ππ stacked supramolecular nanodrugs under tumor microenvironment by introducing stimuli-responsive drug-mates

Author information +
History +
PDF

Abstract

Numerous reports have demonstrated the construction of supramolecular nanodrugs (SNDs) via the ππ stacking of drug molecules for antitumor applications because most drugs possess aromatic rings or other planar conjugate units. However, the destruction of ππ stacking and the subsequent disassembly of SNDs under tumor microenvironment (TME), which is the precondition for drug release, have not been clearly described. In this work, based on a disassembly model of ππ stacked naphthoquinone SNDs, the influence of co-assembled drugs on disassembly is delineated. Both the experimental observation and computational simulation indicate that the disassembly of SNDs under simulated TME highly depends on the disassembly activation energy (ΔEdis) of neighboring ππ stacked molecules. Owing to the high ΔEdis, the disassembly of self-assembled naphthoquinone SNDs is greatly restricted. Meaningfully, the ΔEdis is the sum of a series of activation energy according to the specific stimuli of TME. Thus, a concept of stimuli-responsive drug-mates is proposed for boosting the disassembly of ππ stacked SNDs, namely the foremost co-assembly of π-conjugated drugs with additional drug molecules that possess relatively weak ππ interaction but high TME responsiveness. Further computational simulation reveals that the introduction of stimuli-responsive drug-mates significantly lowers the ΔEdis, thus accelerating the disassembly of SNDs and the release of drug payloads. Holding the advantages of π-conjugated drug library, the concept of stimuli-responsive drug-mates gives an extensive design of ππ stacked SNDs toward heterogeneous nidus microenvironment responsiveness, which highlights the superiority of widely used drug co-assembly strategy in constructing multifunctional SNDs.

Keywords

disassembly / drug release / naphthoquinones / stimuli-responsive drug-mates / supramolecular nanodrugs / ππstacking

Cite this article

Download citation ▾
Wenzhe Xu, Ruixu Yang, Yingke Xue, Yang Chen, Shuwei Liu, Songling Zhang, Yonggang Wang, Yi Liu, Hao Zhang. Boosting disassembly of ππ stacked supramolecular nanodrugs under tumor microenvironment by introducing stimuli-responsive drug-mates. Aggregate, 2025, 6(1): e648 DOI:10.1002/agt2.648

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, R. Langer, Nat. Rev. Drug Discov. 2020, 20, 101.

[2]

S. Li, W. Zhang, H. Xue, R. Xing, X. Yan, Chem. Sci. 2020, 11, 8644.

[3]

W. S. Saad, R. K. Prud’homme, Nano Today 2016, 11, 212.

[4]

L. Ren, S. Pan, H. Li, Y. Li, L. He, S. Zhang, J. Che, Y. Niu, Sci. Rep. 2018, 8, 15143.

[5]

P. Bhutani, G. Joshi, N. Raja, N. Bachhav, P. K. Rajanna, H. Bhutani, A. T. Paul, R. Kumar, J. Med. Chem. 2021, 64, 2339.

[6]

Y. Yang, X. Li, J. Song, L. Li, Q. Ye, S. Zuo, T. Liu, F. Dong, X. Liu, Z. He, B. Sun, J. Sun, Nano Lett. 2023, 23, 1530.

[7]

D. Xi, N. Xu, X. Xia, C. Shi, X. Li, D. Wang, S. Long, J. Fan, W. Sun, X. Peng, Adv. Mater. 2021, 34, 2106797.

[8]

E. Feng, Y. Liu, S. Lv, D. Liu, S. Huang, Z. Li, F. Song, Adv. Funct. Mater. 2022, 32, 2209258.

[9]

Y. Liu, S. Xu, Q. Lyu, Y. Huang, W. Wang, Aggregate 2023, 5, e443.

[10]

L. Han, S. Liang, W. Mu, Z. Zhang, L. Wang, S. Ouyang, B. Yao, Y. Liu, N. Zhang, Asian J. Pharm. Sci. 2022, 17, 129.

[11]

Z. Zhou, C. Du, Q. Zhang, G. Yu, F. Zhang, X. Chen, Angew. Chem. Int. Ed. 2021, 60, 21033.

[12]

D. M. Azagury, B. F. Gluck, Y. Harris, Y. Avrutin, D. Niezni, H. Sason, Y. Shamay, J. Control. Release 2023, 360, 418.

[13]

W. F. Song, J. Y. Zeng, P. Ji, Z. Y. Han, Y. X Sun, X. Z. Zhang, Small 2023, 19, 2301148.

[14]

M. Zuo, W. Qian, Z. Xu, W Shao, X. Hu, D. Zhang, J. Jiang, X. Sun, L. Wang, Small 2018, 14, 1801942.

[15]

R. Qiu, I. R. Sasselli, Z. Álvarez, H. Sai, W. Ji, L. C. Palmer, S. I. Stupp, J. Am. Chem. Soc. 2022, 144, 5562.

[16]

S. Li, W. Zhang, R. Xing, C. Yuan, H. Xue, X. Yan, Adv. Mater. 2021, 33, e2100595.

[17]

S. Fu, G. Li, W. Zang, X. Zhou, K. Shi, Y. Zhai, Acta Pharm. Sin. B 2022, 12, 92.

[18]

J. Xu, J. Wang, J. Ye, J. Jiao, Z. Liu, C. Zhao, B. Li, Y. Fu, Adv. Sci. 2021, 8, 2101101.

[19]

Q. Zhou, J. Xiang, N. Qiu, Y. Wang, Y. Piao, S. Shao, J. Tang, Z. Zhou, Y. Shen, Chem. Rev. 2023, 123, 10920.

[20]

S. G. Antimisiaris, A. Marazioti, M. Kannavou, E. Natsaridis, F. Gkartziou, G. Kogkos, S. Mourtas, Adv. Drug Delivery Rev. 2021, 174, 53.

[21]

Y. Liang, Y. Sun, X. Fu, Y. Lin, Z. Meng, Y. Meng, J. Niu, Y. Lai, Y. Sun, Artif. Cell Nanomed. B 2020, 48, 525.

[22]

K. R. Karnati, Y. Wang, Phys. Chem. Chem. Phys. 2018, 20, 9389.

[23]

F. Zhang, G. Pei, B. Huang, J. Xu, L. Zhang, J. Mater. Chem. B 2023, 11, 9246.

[24]

J.-S. Lan, L. Liu, R.-F. Zeng, Y.-H. Qin, J.-W. Hou, S.-S. Xie, S. Yue, J. Yang, R. J. Y. Ho, Y. Ding, T. Zhang, Chem. Eng. J. 2021, 407, 127212.

[25]

Y. Chen, T. Zhao, M. Bai, T. Gu, J. Sun, Z. He, S. Zhang, C. Luo, Chem. Eng. J. 2022, 435, 135160.

[26]

M. Chang, Z. Hou, D. Jin, J. Zhou, M. Wang, M. Wang, M. Shu, B. Ding, C. Li, J. Lin, Adv. Mater. 2020, 32, 2004647.

[27]

J. Deng, A. Walther, Adv. Mater. 2020, 32, 2002629.

[28]

M. Kanamala, W. R. Wilson, M. Yang, B. D. Palmer, Z. Wu, Biomaterials 2016, 85, 152.

[29]

J. Wu, J. Chen, Y. Feng, S. Zhang, L. Lin, Z. Guo, P. Sun, C. Xu, H. Tian, X. Chen, Sci. Adv. 2020, 6, eabc7828.

[30]

Y. Yang, B. Sun, S. Zuo, X. Li, S. Zhou, L. Li, C. Luo, H. Liu, M. Cheng, Y. Wang, S. Wang, Z. He, J. Sun, Sci. Adv. 2020, 6, eabc1725.

[31]

T. Li, H. Xu, Cell Rep. Phys. Sci. 2020, 1, 100111.

[32]

K. Li, K. Xu, Y. He, Y. Yang, M. Tan, Y. Mao, Y. Zou, Q. Feng, Z. Luo, K. Cai, ACS Nano 2023, 17, 4667.

[33]

H. Zhang, W. Chen, J. Wang, W. Du, B. Wang, L. Song, Y. Hu, X. Ma, Biomaterials 2023, 293, 121954.

[34]

Y. Liu, Y. Wu, Z. Luo, M. Li, iScience 2023, 26, 106279.

[35]

Y. Liu, Z. Jiang, S. Tong, Y. Sun, Y. Zhang, J. Zhang, D. Zhao, Y. Su, J. Ding, X. Chen, Adv. Mater. 2023, 35, 2203291.

[36]

X. Liu, Y. Li, K. Wang, Y. Chen, M. Shi, X. Zhang, W. Pan, N. Li, B. Tang, Nano Lett. 2021, 21, 7862.

[37]

B. Chu, Y. Qu, X. He, Y. Hao, C. Yang, Y. Yang, D. Hu, F. Wang, Z. Qian, Adv. Funct. Mater. 2020, 30, 2005918.

[38]

H. Gao, L. Gao, J. Lin, Y. Lu, L. Wang, C. Cai, X. Tian, Macromolecules 2020, 53, 3571.

[39]

D. Chadar, D. N. Lande, S. P. Gejji, M. D. Nikalje, J. Mol. Struct. 2019, 1188, 196.

[40]

A. P. Ware, A. Patil, S. Khomane, T. Weyhermüller, S. S. Pingale, S. Salunke-Gawali, J. Mol. Struct. 2015, 1093, 39.

[41]

G.-G. Yang, H. Zhang, D.-Y. Zhang, Q. Cao, J. Yang, L.-N. Ji, Z.-W. Mao, Biomaterials 2018, 185, 73.

[42]

Q. Du, X. Qin, M. Zhang, Z. Zhao, Q. Li, X. Ren, N. Wang, Y. Luan, Chem. Commun. 2021, 57, 8993.

[43]

J. Li, S. Zhou, J. Yu, W. Cai, Y. Yang, X. Kuang, H. Liu, Z. He, Y. Wang, J. Control. Release 2021, 335, 306.

[44]

W. Xu, Y. Chen, R. Yang, Y. Fu, W. Zhuang, Y. Wang, Y. Liu, H. Zhang, ACS Nano 2023, 17, 18227.

[45]

X. Y. Wong, A. Sena-Torralba, R. Álvarez-Diduk, K. Muthoosamy, A. Merkoçi, ACS Nano 2020, 14, 2585.

[46]

H. Ding, P. Tan, S. Fu, X. Tian, H. Zhang, X. Ma, Z. Gu, K. Luo, J. Control. Release 2022, 348, 206.

[47]

S. Peng, F. Xiao, M. Chen, H. Gao, Adv. Sci. 2021, 9, 2103836.

[48]

A. A. Oun, S. Roy, G. H. Shin, S. Yoo, J. T. Kim, Int. J. Biol. Macromol. 2023, 242, 124905.

[49]

M. S. Khan, Z. H. Khan, Spectrochim. Acta A 2005, 61, 777.

[50]

F. Sbordone, A. Micallef, H. Frisch, Angew. Chem. Int. Ed. 2024, 63, e202319839.

[51]

C. Yang, M. Wang, M. Chang, M. Yuan, W. Zhang, J. Tan, B. Ding, P. a. Ma, J. Lin, J. Am. Chem. Soc. 2023, 145, 7205.

[52]

C. W. Nogueira, J. B. T. Rocha, Arch. Toxicol. 2011, 85, 1313.

[53]

D. Gao, M. Hiromura, H. Yasui, H. Sakurai, Biol. Pharm. Bull. 2002, 25, 827.

[54]

Y. Huang, X. Guo, Z. Wang, C. Yin, M. Chen, J. Xie, N. Li, Z. Tu, J. Li, J. Cao, Z. Jiang, W. Huang, H. Tian, J. Ethnopharmacol. 2024, 319, 117074.

[55]

B. Enaru, G. Drețcanu, T. D. Pop, A. Stǎnilǎ, Z. Diaconeasa, Antioxidants 2021, 10, 1967.

[56]

H. J. Reich, R. J. Hondal, ACS Chem. Biol. 2016, 11, 821.

[57]

P. Han, S. Li, W. Cao, Y. Li, Z. Sun, Z. Wang, H. Xu, J. Mater. Chem. B 2013, 1, 740.

[58]

W. Feng, W. Shi, Z. Wang, Y. Cui, X. Shao, S. Liu, L. Rong, Y. Liu, H. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 37540.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/