Bowl on the ring: Molecular crowns hosting fullerenes synergistically by buckybowl and nanohoop

Wenru Song , Zhe Liu , Xinqiang Hua , Shaojie Yang , Xia Tang , Chengshan Yuan , Zitong Liu , Hao-Li Zhang , Xiangfeng Shao

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e646

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e646 DOI: 10.1002/agt2.646
RESEARCH ARTICLE

Bowl on the ring: Molecular crowns hosting fullerenes synergistically by buckybowl and nanohoop

Author information +
History +
PDF

Abstract

Curved π-electron systems show unique properties and assembly feature that enable the specific applications in materials science and supramolecular chemistry. Herein, fullerene, carbon nanohoop and π-bowl are integrated by the coupling of covalent and supramolecular tactics. Firstly, π-bowl trichalcogenasumanenes (TCSs) are fused with a carbon nanohoop [10]CPP via covalent joint to form molecular crowns 4a/4b, which show structural and electronic complementarity and accordingly strong binding affinity to C60/C70. Secondly, the supramolecular assemblies of 4a/4b with fullerenes afford the host-guest complexes 4a/4b⊃C60/C70 in solution (molar ratio, 2:1) and solid state (molar ratio, 1:1). In the crystals of host–guest complexes, the intra-cluster and inter-cluster interactions are respectively dominated by the [10]CPP and TCSs moieties of 4a/4b. Additionally, it is found that 4a/4b are good photosensitizers for generating 1O2 and show structural adaptability in accordance to assembly conditions. 4a/4b take an endo-conformation in their own crystals with TCSs and [10]CPP moieties being bowl-shaped and elliptical, respectively. In contrast, the [10]CPP on 4a/4b changes into circular and the TCSs moiety becomes flat (for 4b) or shows bowl inversion to be exo-conformation (for 4a) in 4a/4b⊃C60/C70.

Keywords

carbon nanohoop / fullerene / molecular crown / supramolecular assembly / π-bowl

Cite this article

Download citation ▾
Wenru Song, Zhe Liu, Xinqiang Hua, Shaojie Yang, Xia Tang, Chengshan Yuan, Zitong Liu, Hao-Li Zhang, Xiangfeng Shao. Bowl on the ring: Molecular crowns hosting fullerenes synergistically by buckybowl and nanohoop. Aggregate, 2024, 5(6): e646 DOI:10.1002/agt2.646

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.b) W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354.c) G. Meijer, D. S. Bethune, J. Chem. Phys. 1990, 93, 7800.d) A. Hirsch, Nat. Mater. 2010, 9, 868.

[2]

a) A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, A. R. Kortan, Nature 1991, 350, 600.b) Y. Iwasa, Nature 2010, 466, 191.c) O. Gunnarsson, Rev. Mod. Phys. 1997, 69, 575.

[3]

a) N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474.b) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.c) G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.d) B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.

[4]

J. Li, S. Hou, Y.-R. Yao, C. Zhang, Q. Wu, H.-C. Wang, H. Zhang, X. Liu, C. Tang, M. Wei, W. Xu, Y. Wang, J. Zheng, Z. Pan, L. Kang, J. Liu, J. Shi, Y. Yang, C. J. Lambert, S.-Y. Xie, W. Hong, Nat. Mater. 2022, 21, 917.

[5]

L. Hou, X. Cui, B. Guan, S. Wang, R. Li, Y. Liu, D. Zhu, J. Zheng, Nature 2022, 606, 507.

[6]

E. Meirzadeh, A. M. Evans, M. Rezaee, M. Milich, C. J. Dionne, T. P. Darlington, S. T. Bao, A. K. Bartholomew, T. Handa, D. J. Rizzo, R. A. Wiscons, M. Reza, A. Zangiabadi, N. Fardian-Melamed, A. C. Crowther, P. J. Schuck, D. N. Basov, X. Zhu, A. Giri, P. E. Hopkins, P. Kim, M. L. Steigerwald, J. Yang, C. Nuckolls, X. Roy, Nature 2023, 613, 71.

[7]

a) W. Brenner, T. K. Ronson, J. R. Nitschke, J. Am. Chem. Soc. 2017, 139, 75. b) Y. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q.-H. Guo, C. Stern, M. R. Wasielewski, F. Diederich, W. A. Goddard III, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 13835.

[8]

C. García-Simón, M. Costas, X. Ribas, Chem. Soc. Rev. 2016, 45, 40.

[9]

R. Kaur, S. Sen, M. C. Larsen, L. Tavares, J. Kjelstrup-Hansen, M. Ishida, A. Zieleniewska, V. M. Lynch, S. Bähring, D. M. Guldi, J. L. Sessler, A. Jana, J. Am. Chem. Soc. 2020, 142, 11497.

[10]

a) E. Huerta, H. Isla, E. M. Pérez, C. Bo, N. Martín, J. de Mendoza, J. Am. Chem. Soc. 2010, 132, 5351.b) C. Zhu, K. Shoyama, M. A. Niyas, F. Würthner, J. Am. Chem. Soc. 2022, 144, 16282.c) Q. Chen, A. L. Thompson, K. E. Christensen, P. N. Horton, S. J. Coles, H. L. Anderson, J. Am. Chem. Soc. 2023, 145, 11859.

[11]

a) T. Kawase, H. Kurata, Chem. Rev. 2006, 106, 5250.b) D. Canevet, E. M. Pérez, N. Martín, Angew. Chem. Int. Ed. 2011, 50, 9248.c) Y. Xu, M. von Delius, Angew. Chem. Int. Ed. 2020, 59, 559.

[12]

a) T. Kawase, K. Tanaka, Y. Seirai, N. Shiono, M. Oda, Angew. Chem. Int. Ed. 2003, 42, 5597.b) D. Canevet, M. Gallego, H. Isla, A. de Juan, E. M. Pérez, N. Martín, J. Am. Chem. Soc. 2011, 133, 3184.c) E. M. Pérez, N. Martín, Chem. Soc. Rev. 2008, 37, 1512.

[13]

R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646.

[14]

a) E. J. Leonhardt, R. Jasti, Nat. Rev. Chem. 2019, 3, 672.b) Y. Segawa, D. R. Levine, K. Itami, Acc. Chem. Res. 2019, 52, 2760.c) J. Wang, X. Zhang, H. Jia, S. Wang, P. Du, Acc. Chem. Res. 2021, 54, 4178.d) M. Hermann, D. Wassy, B. Esser, Angew. Chem. Int. Ed. 2021, 60, 15743.

[15]

H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Nat. Chem. 2013, 5, 572.

[16]

a) T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino, S. Yamago, Angew. Chem. Int. Ed. 2011, 50, 8342.b) T. Matsuno, M. Fujita, K. Fukunaga, S. Sato, H. Isobe, Nat. Commun. 2018, 9, 3779. c) K. Li, Z. Xu, H. Deng, Z. Zhou, Y. Dang, Z. Sun, Angew. Chem. Int. Ed. 2021, 60, 7649.d) J. S. Wössner, D. Wassy, A. Weber, M. Bovenkerk, M. Hermann, M. Schmidt, B. Esser, J. Am. Chem. Soc. 2021, 143, 12244.e) L. Zhan, C. Dai, G. Zhang, J. Zhu, S. Zhang, H. Wang, Y. Zeng, C.-H. Tung, L.-Z. Wu, H. Cong, Angew. Chem. Int. Ed. 2022, 61, e202113334. f) Y. Xu, B. Wang, R. Kaur, M. B. Minameyer, M. Bothe, T. Drewello, D. M. Guldi, M. von Delius, Angew. Chem. Int. Ed. 2018, 57, 1154. g) J. Rio, S. Beeck, G. Rotas, S. Ahles, D. Jacquemin, N. Tagmatarchis, C. Ewels, H. A. Wegner, Angew. Chem. Int. Ed. 2018, 57, 6930.h) Q. Huang, G. Zhuang, H. Jia, M. Qian, S. Cui, S. Yang, P. Du, Angew. Chem. Int. Ed. 2019, 58, 6244.i) J. P. Mora-Fuentes, M. D. Codesal, M. Reale, C. M. Cruz, V. G. Jiménez, A. Sciortino, M. Cannas, F. Messina, V. Blanco, A. G. Campaña, Angew. Chem. Int. Ed. 2023, 62, e202301356. j) J. Xia, J. W. Bacon, R. Jasti, Chem. Sci. 2012, 3, 3018.

[17]

a) P. W. Rabideau, A. Sygula, Acc. Chem. Res. 1996, 29, 235.b) Y.-T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843.c) V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868.d) T. Amaya, T. Hirao, Chem. Rec. 2015, 15, 310.e) A. Haupt, D. Lentz, Chem. Eur. J. 2019, 25, 3440.f) M. A. Majewski, M. Stępień, Angew. Chem. Int. Ed. 2019, 58, 86.g) W. Wang, X. Shao, Org. Biomol. Chem. 2021, 19, 101.

[18]

a) W. E. Barth, R. G. Lawton, J. Am. Chem. Soc. 1966, 88, 380.b) L. T. Scott, M. M. Hashemi, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 1991, 113, 7082.c) L.T. Scott, P. Cheng, M. M. Hashemi, M. B. Bratcher, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 1997, 119, 10963.d) A. Sygula, P. W. Rabideau, J. Am. Chem. Soc. 1999, 121, 7800.e) T. J. Seiders, E. L. Elliott, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 1999, 121, 7804.

[19]

H. Sakurai, T. Daiko, T. Hirao, Science 2003, 301, 1878.

[20]

a) S. Mizyed, P. E. Georghiou, M. Bancu, B. Cuadra, A. K. Rai, P. Cheng, L. T. Scott, J. Am. Chem. Soc. 2001, 123, 12770.b) I. V. Kuvychko, C. Dubceac, S. H. M. Deng, X.-B. Wang, A. A. Granovsky, A. A. Popov, M. A. Petrukhina, S. H. Strauss, O. V. Boltalina, Angew. Chem. Int. Ed. 2013, 52, 7505. c) J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, T. Aida, Science 2015, 347, 646.

[21]

a) E. A. Jackson, B. D. Steinberg, M. Bancu, A. Wakamiya, L. T. Scott, J. Am. Chem. Soc. 2007, 129, 484.b) T. Amaya, T. Nakata, T. Hirao, J. Am. Chem. Soc. 2009, 131, 10810.c) O. Allemann, S. Duttwyler, P. Romanato, K. K. Baldridge, J. S. Siegel, Science 2011, 332, 574.d) T.-C. Wu, M.-K. Chen, Y.-W. Lee, M.-Y. Kuo, Y.-T. Wu, Angew. Chem. Int. Ed. 2013, 52, 1289.e) K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739.f) T. Amaya, T. Ito, T. Hirao, Angew. Chem. Int. Ed. 2015, 54, 5483.g) K. Kato, Y. Segawa, L. T. Scott, K. Itami, Angew. Chem. Int. Ed. 2018, 57, 1337.

[22]

a) K. Imamura, K. Takimiya, T. Otsubo, Y. Aso, Chem. Commun. 1999, 1859. b) S. Furukawa, J. Kobayashi, T. Kawashima, J. Am. Chem. Soc. 2009, 131, 14192.c) T. Tanikawa, M. Saito, J. Guo, S. Nagase, M. Minoura, Eur. J. Org. Chem. 2012, 2012, 7135.d) Q. Tan, D. Zhou, T. Zhang, B. Liu, B. Xu, Chem. Commun. 2017, 53, 10279.e) M. Jiang, J. Guo, B. Liu, Q. Tan, B. Xu, Org. Lett. 2019, 21, 8328.f) S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 7256.g) X. Zhang, M. R. Mackinnon, G. J. Bodwell, S. Ito, Angew. Chem. Int. Ed. 2022, 61, e202116585.

[23]

a) B. M. Schmidt, S. Seki, B. Topolinski, K. Ohkubo, S. Fukuzumi, H. Sakurai, D. Lentz, Angew. Chem. Int. Ed. 2012, 51, 11385.b) I. Hisaki, H. Toda, H. Sato, N. Tohnai, H. Sakurai, Angew. Chem. Int. Ed. 2017, 56, 15294.c) Z. Xing, M.-W. An, Z.-C. Chen, M. Hu, X. Huang, L.-L. Deng, Q. Zhang, X. Guo, S.-Y. Xie, S. Yang, J. Am. Chem. Soc. 2022, 144, 13839.d) R.-Q. Lu, S. Wu, L.-L. Yang, W.-B. Gao, H. Qu, X.-Y. Wang, J.-B. Chen, C. Tang, H.-Y. Shi, X.-Y. Cao, Angew. Chem. Int. Ed. 2019, 58, 7600.e) Q. Tan, S. Higashibayashi, S. Karanjit, H. Sakurai, Nat. Commun. 2012, 3, 891. f) S. Furukawa, Y. Suda, J. Kobayashi, T. Kawashima, T. Tada, S. Fujii, M. Kiguchi, M. Saito, J. Am. Chem. Soc. 2017, 139, 5787.g) S. Furukawa, J. Wu, M. Koyama, K. Hayashi, N. Hoshino, T. Takeda, Y. Suzuki, J. Kawamata, M. Saito, T. Akutagawa, Nat. Commun. 2021, 12, 768. h) Z.-L. Qiu, Y. Cheng, Q. Zeng, Q. Wu, X.-J. Zhao, R.-J. Xie, L. Feng, K. Liu, Y.-Z. Tan, J. Am. Chem. Soc. 2023, 145, 3289.

[24]

a) A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau, M. M. Olmstead, J. Am. Chem. Soc. 2007, 129, 3842.b) S. Lampart, L. M. Roch, A. K. Dutta, Y. Wang, R. Warshamanage, A. D. Finke, A. Linden, K. K. Baldridge, J. S. Siegel, Angew. Chem. Int. Ed. 2016, 55, 14648.c) Y. Shoji, T. Kajitani, F. Ishiwari, Q. Ding, H. Sato, H. Anetai, T. Akutagawa, H. Sakurai, T. Fukushima, Chem. Sci. 2017, 8, 8405.d) Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. Int. Ed. 2018, 57, 9818.e) Z.-L. Qiu, C. Tang, X.-R. Wang, Y.-Y. Ju, K.-S. Chu, Z.-Y. Deng, H. Hou, Y.-M. Liu, Y.-Z. Tan, Angew. Chem. Int. Ed. 2020, 132, 21054.

[25]

a) M. Saito, H. Shinokubo, H. Sakurai, Mater. Chem. Front. 2018, 2, 635.b) M. C. Stuparu, Acc. Chem. Res. 2021, 54, 2858.

[26]

a) M. C. Stuparu, Angew. Chem. Int. Ed. 2013, 52, 7786.b) H. Yokoi, Y. Hiraoka, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215. c) H. Yokoi, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Chem. Sci. 2018, 9, 819.d) S. Zank, J. M. Fernández-García, A. J. Stasyuk, A. A. Voityuk, M. Krug, M. Solà, D. M. Guldi, N. Martín, Angew. Chem. Int. Ed. 2022, 134, e202112834. e) G. Gao, M. Chen, J. Roberts, M. Feng, C. Xiao, G. Zhang, S. Parkin, C. Risko, L. Zhang, J. Am. Chem. Soc. 2020, 142, 2460.

[27]

a) A. Sygula, A. H. Abdourazak, P. W. Rabideau, J. Am. Chem. Soc. 1996, 118, 339.b) T. Hayama, K. K. Baldridge, Y.-T. Wu, A. Linden, J. S. Siegel, J. Am. Chem. Soc. 2008, 130, 1583.c) T. Amaya, H. Sakane, T. Muneishi, T. Hirao, Chem. Commun. 2008, 765. d) T.-C. Wu, H.-J. Hsin, M.-Y. Kuo, C.-H. Li, Y.-T. Wu, J. Am. Chem. Soc. 2011, 133, 16319.e) Y. Zou, W. Zeng, T. Y. Gopalakrishna, Y. Han, Q. Jiang, J. Wu, J. Am. Chem. Soc. 2019, 141, 7266. f) K. Kise, S. Ooi, H. Saito, H. Yorimitsu, A. Osuka, T. Tanaka, Angew. Chem. Int. Ed. 2022, 61, e202112589.

[28]

a) S. Higashibayashi, H. Sakurai, J. Am. Chem. Soc. 2008, 130, 8592.b) H. Sakane, T. Amaya, T. Moriuchi, T. Hirao, Angew. Chem. Int. Ed. 2009, 48, 1640.

[29]

a) S. Fujii, M. Ziatdinov, S. Higashibayashi, H. Sakurai, M. Kiguchi, J. Am. Chem. Soc. 2016, 138, 12142.b) Q. S. Stöckl, Y.-C. Hsieh, A. Mairena, Y.-T. Wu, K.-H. Ernst, J. Am. Chem. Soc. 2016, 138, 6111.

[30]

A. S. Filatov, M. A. Petrukhina, Coord. Chem. Rev. 2010, 254, 2234.

[31]

T. Amaya, W.-Z. Wang, H. Sakane, T. Moriuchi, T. Hirao, Angew. Chem. Int. Ed. 2010, 49, 403.

[32]

M. Gallego, J. Calbo, J. Aragó, R. M. K. Calderon, F. H. Liquido, T. Iwamoto, A. K. Greene, E. A. Jackson, E. M. Pérez, E. Ortí, D. M. Guldi, L. T. Scott, N. Martín, Angew. Chem. Int. Ed. 2014, 53, 2170.

[33]

Y.-M. Liu, Y.-Q. Huang, S.-H. Liu, D. Chen, C. Tang, Z.-L. Qiu, J. Zhu, Y.-Z. Tan, Angew. Chem. Int. Ed. 2019, 58, 13276.

[34]

a) X. Li, Y. Zhu, J. Shao, B. Wang, S. Zhang, Y. Shao, X. Jin, X. Yao, R. Fang, X. Shao, Angew. Chem. Int. Ed. 2014, 53, 535.b) S. Wang, X. Li, X. Hou, Y. Sun, X. Shao, Chem. Commun. 2016, 52, 14486.c) S. Wang, J. Shang, C. Yan, W. Wang, C. Yuan, H.-L. Zhang, X. Shao, Org. Chem. Front. 2019, 6, 263.d) J. Shang, R. Wang, C. Yuan, Z. Liu, H.-L. Zhang, X. Shao, Angew. Chem. Int. Ed. 2022, 61, e202117504.

[35]

a) X. Li, Y. Zhu, J. Shao, L. Chen, S. Zhao, B. Wang, S. Zhang, Y. Shao, H.-L. Zhang, X. Shao, Angew. Chem. Int. Ed. 2015, 54, 267.b) X. Hou, Y. Zhu, Y. Qin, L. Chen, X. Li, H.-L. Zhang, W. Xu, D. Zhu, X. Shao, Chem. Commun. 2017, 53, 1546. c) Y. Sun, X. Li, C. Sun, H. Shen, X. Hou, D. Lin, H.-L. Zhang, C.-A. Di, D. Zhu, X. Shao, Angew. Chem. Int. Ed. 2017, 56, 13470.d) X. Hou, X. Li, C. Sun, L. Chen, Y. Sun, Z. Liu, H.-L. Zhang, X. Shao, Chem. Eur. J. 2017, 23, 14375.e) X. Hou, J. Sun, Z. Liu, C. Yan, W. Song, H.-L. Zhang, S. Zhou, X. Shao, Chem. Commun. 2018, 54, 10981.f) L. Liu, C. Yan, Y. Li, Z. Liu, C. Yuan, H.-L. Zhang, X. Shao, Chem. Eur. J. 2020, 26, 7083.g) S. Wang, C. Yan, W. Zhao, X. Liu, C.-S. Yuan, H.-L. Zhang, X. Shao, Chem. Sci. 2021, 12, 5811.h) Z. Liu, W. Song, C. Yan, Z. Liu, H.-L. Zhang, X. Shao, Org. Chem. Front. 2021, 29, 4767. i) W. Wang, L. Feng, X. Hua, C. Yuan, X. Shao, Chin. J. Chem. 2021, 39, 3413.j) Z. Liu, W. Song, S. Yang, C. Yuan, Z. Liu, H.-L. Zhang, X. Shao, Chem. Eur. J. 2022, 28, e202200306. k) X. Wang, X. Hua, H. Zhang, L. Wu, C. Yuan, Z. Liu, H. L. Zhang, X. Shao, Chem. Eur. J. 2023, 29, e202303085.

[36]

a) B. Fu, X. Hou, C. Wang, Y. Wang, X. Zhang, R. Li, X. Shao, W. Hu, Chem. Commun. 2017, 53, 11407.b) J. Sun, Y. Sun, C. Yan, D. Lin, Z. Xie, S. Zhou, C. Yuan, H.-L. Zhang, X. Shao, J. Mater. Chem. C 2018, 6, 13114.c) B. Fu, C. Wang, Y. Sun, J. Yao, Y. Wang, F. Ge, F. Yang, Z. Liu, Y. Dang, X. Zhang, X. Shao, R. Li, W. Hu, Adv. Mater. 2019, 31, 1901437.

[37]

S. Wang, X. Li, G. Zhuang, M. Chen, P. Huang, S. Yang, P. Du, Chem. Commun. 2021, 57, 9104.

[38]

A. Bondi, J. Phys. Chem. 1964, 68, 441.

[39]

a) J. Xia, M. R. Golder, M. E. Foster, B. M. Wong, R. Jasti, J. Am. Chem. Soc. 2012, 134, 19709.b) Y. Ishii, S. Matsuura, Y. Segawa, K. Itami, Org. Lett. 2014, 16, 2174.

[40]

a) Solvatochromism (Eds.: P. Suppan, N. Ghoneim), The Royal Society of Chemistry, Cambridge 1997. b) A. Marini, A. Munoz-Losa, A. Biancardi, B. Mennucci, J. Phys. Chem. B 2010, 114, 17128.

[41]

a) P. R. Ogilby, Chem. Soc. Rev. 2010, 39, 3181.b) D. E. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380.

[42]

a) M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233. b) A. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer 2006, 6, 535.

[43]

a) Y. Jiang, J. Li, Z. Zeng, C. Xie, Y. Lyu, K. Pu, Angew. Chem. Int. Ed. 2019, 58, 8161.b) G. Xu, C. Li, C. Chi, L. Wu, Y. Sun, J. Zhao, X. Xia, S. Gou, Nat. Commun. 2022, 13, 3064.

[44]

a) J. Park, D. Feng, S. Yuan, H.-C. Zhou, Angew. Chem. Int. Ed. 2015, 54, 430.b) Y. Ding, Y.-P. Chen, X. Zhang, L. Chen, Z. Dong, H.-L. Jiang, H. Xu, H.-C. Zhou, J. Am. Chem. Soc. 2017, 139, 9136.c) Y. Kim, J. Koo, I.-C. Hwang, R. D. Mukhopadhyay, S. Hong, J. Yoo, A. A. Dar, I. Kim, D. Moon, T. J. Shin, Y. H. Ko, K. Kim, J. Am. Chem. Soc. 2018, 140, 14547.

[45]

a) P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305.b) D. Brynn Hibberta, P. Thordarson, Chem. Commun. 2016, 52, 12792.c) BindFit, http://supramolecular.org (accessed:9 May 2016).

[46]

T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/