Aggregation-induced emission biomarkers for early detection of orthopaedic implant failure

Javad Tavakoli , Qi Hu , Joanne L. Tipper , Youhong Tang

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e645

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e645 DOI: 10.1002/agt2.645
REVIEW

Aggregation-induced emission biomarkers for early detection of orthopaedic implant failure

Author information +
History +
PDF

Abstract

In recent years, the substantial increase in total joint replacements for treating degenerative joint disease has heightened concerns regarding implant loosening and failure. This is especially critical as more young patients are undergoing both initial and subsequent joint replacement procedures. These complications often necessitate additional revision surgeries. Unfortunately, current clinical practices lack effective methods for the early detection of implant failure, and there is a noticeable absence of strategies utilizing molecular markers to identify post-surgery implant issues. This article critically assesses the potential of aggregation-induced emission (AIE) biomarkers in detecting molecular markers relevant to implant failure. It begins by outlining the pathogenesis of implant loosening and identifying pertinent molecular markers. The study then delves into how AIE luminogens (AIEgens) can play a crucial role in detecting processes such as osteogenesis and osteoclastogenesis. Notably, it discusses the utilization of AIEgens in detecting key molecular markers, including TNF-α, osteocalcin, and urinary N-terminal telopeptide. The prospect of AIE biomarkers for the early detection of bone loss and implant failure presents a promising avenue for enhancing our understanding of skeletal health and improving clinical outcomes through timely intervention and personalized treatment approaches. Ongoing research and development in this area are crucial for translating AIE-based technologies into practical tools for optimizing bone health management.

Keywords

aggregation-induced emission / biomarkers / early detection / implant failure / orthopaedic implants / osteolysis

Cite this article

Download citation ▾
Javad Tavakoli, Qi Hu, Joanne L. Tipper, Youhong Tang. Aggregation-induced emission biomarkers for early detection of orthopaedic implant failure. Aggregate, 2024, 5(6): e645 DOI:10.1002/agt2.645

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Kurtz, K. Ong, E. Lau, F. Mowat, M. Halperns, J. Bone Joint Surg. Am. 2007, 89, 780.

[2]

S. M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly, K. J. Bozic, Clin. Orthop. Relat. Res. 2009, 467, 2606.

[3]

M. D. Jones, C. L. Buckle, Orthop. Trauma 2020, 34, 146.

[4]

R. M. Bhalekar, S. R. Wells, M. E. Nargol, S. Shariatpanahi, A. V. Nargol, S. Waller, L. Wildberg, S. Tilley, D. J. Langton, Knee 2024, 47, 1.

[5]

N. Athanasou, Bone Joint Res. 2016, 5, 162.

[6]

A. M. Kandahari, X. Yang, K. A. Laroche, A. S. Dighe, D. Pan, Q. Cui, Bone Res. 2016, 4, 16014.

[7]

Y. Yang, D. Sheng, J. Shi, L. Xiao, Z. Wang, Z. Yin, Q. Zhuang, S. Chen, Y. Li, Y. Gu, Biomed. Pharmacother. 2023, 158, 114113.

[8]

A. J. Kievit, G. S. Buijs, J. G. Dobbe, A. Ter Wee, G. M. Kerkhoffs, G. J. Streekstra, M. U. Schafroth, L. Blankevoort, Clin. Biomech. 2023, 104, 105930.

[9]

S. D. Stegelmann, R. Rahmani, M. Tille, S. Eaddy, S. Phillips, J. Orthop. 2023, 45, 37.

[10]

L. M. Childs, J. J. Goater, R. J. O’Keefe, E. M. Schwarz, J. Bone Miner. Res. 2001, 16, 338.

[11]

B. Yu, S. Hao, S. Sun, H. Guo, X. Yang, X. Ma, Q. Jin, Zhongguo Xiufu Chongjian Waike Zazhi 2013, 27, 994.

[12]

H. Guo, J. Zhang, S. Hao, Q. Jin, Int. J. Mol. Med. 2013, 32, 296.

[13]

E. Tsourdi, K. Jähn, M. Rauner, B. Busse, L. F. Bonewald, J. Musculoskeletal Neuronal Interact. 2018, 18, 292.

[14]

S. Noordin, B. Masri, Can. J. Surg. 2012, 55, 408.

[15]

Y. Jiang, T. Jia, P. H. Wooley, S. Y. Yang, Acta Orthop. Belg. 2013, 79, 23547507.

[16]

P. E. Purdue, A. S. Levin, K. Ren, T. P. Sculco, D. Wang, S. R. Goldring, HSS J. 2013, 9, 79.

[17]

R. Supra, D. K. Agrawal, J. Orthop. Sports Med. 2023, 5, 9.

[18]

W. J. Boyle, W. S. Simonet, D. L. Lacey, Nature 2003, 423, 337.

[19]

P. Skládal, Z. Jílková, I. Svoboda, V. Kolář, Biosens. Bioelectron. 2005, 20, 2027.

[20]

M. Ramanathan, M. Patil, R. Epur, Y. Yun, V. Shanov, M. Schulz, W. R. Heineman, M. K. Datta, P. N. Kumta, Biosens. Bioelectron. 2016, 77, 580.

[21]

E. Kozhevnikov, S. Qiao, F. Han, W. Yan, Y. Zhao, X. Hou, A. Acharya, Y. Shen, H. Tian, H. Zhang, X. Chen, Y. Zheng, H. Yan, M. Guo, W. Tian, Biosens. Bioelectron. 2019, 141, 111481.

[22]

S. Krishnamoorthy, A. A. Iliadis, T. Bei, G. P. Chrousos, Biosens. Bioelectron. 2008, 24, 313.

[23]

S. Krishnamoorthy, T. Bei, E. Zoumakis, G. P. Chrousos, A. A. Iliadis, Biosens. Bioelectron. 2006, 22, 707.

[24]

W. Grellner, Forensic Sci. Int. 2002, 130, 90.

[25]

E. Sánchez-Tirado, C. Salvo, A. González-Cortés, P. Yáñez-Sedeño, F. Langa, J. M. Pingarrón, Anal. Chim. Acta 2017, 959, 66.

[26]

S. K. Arya, P. Estrela, Methods 2017, 116, 125.

[27]

H. He, Y. Yuan, W. Wang, N.-R. Chiou, A. J. Epstein, L. J. Lee, Biomicrofluidics 2009, 3, 022401.

[28]

K. Freeman, M. Connock, P. Auguste, S. Taylor-Phillips, H. Mistry, D. Shyangdan, R. P. Arasaradnam, P. Sutcliffe, A. Clarke, Health Technol. Assess. 2016, 20, 1.

[29]

M. Taniguchi, K. Nagaoka, T. Kunikata, T. Kayano, H. Yamauchi, S. Nakamura, M. Ikeda, K. Orita, M. Kurimoto, J. Immunol. Methods 1997, 206, 107.

[30]

F. Battaglia, F. Torrini, P. Palladino, S. Scarano, M. Minunni, Biosens. Bioelectron. 2023, 242, 115713.

[31]

A. D. Buskermolen, C. M. S. Michielsen, A. M. de Jong, M. W. J. Prins, Biosens. Bioelectron. 2024, 249, 115934.

[32]

M. Qi, Y. Zhang, C. Cao, M. Zhang, S. Liu, G. Liu, Anal. Chem. 2016, 88, 9614.

[33]

H. Gao, X. Wang, M. Li, H. Qi, Q. Gao, C. Zhang, ACS Appl. Bio Mater. 2019, 2, 3052.

[34]

Q. Cai, H. Li, W. Dong, G. Jie, Biosens. Bioelectron. 2023, 241, 115704.

[35]

H. Hu, D. Pan, H. Xue, M. Zhang, Y. Zhang, Y. Shen, J. Electroanal. Chem. 2018, 824, 195.

[36]

A. K. Yagati, M.-H. Lee, J. Min, Bioelectrochemistry 2018, 122, 93.

[37]

W. Wei, Z. Qiu, Biosens. Bioelectron. 2022, 217, 114670.

[38]

H. Li, H. Lin, W. Lv, P. Gai, F. Li, Biosens. Bioelectron. 2020, 165, 112336.

[39]

L. Lin, Y. Hu, L. Zhang, Y. Huang, S. Zhao, Biosens. Bioelectron. 2017, 94, 523.

[40]

J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429.

[41]

Y. Zhou, J. Hua, D. Ding, Y. Tang, Biomaterials 2022, 286, 121605.

[42]

X. Zhang, B. Yao, Q. Hu, Y. Hong, A. Wallace, K. Reynolds, C. Ramsey, A. Maeder, R. Reed, Y. Tang, Mater. Chem. Front. 2020, 4, 2548.

[43]

J. Tavakoli, S. Pye, A. M. Reza, N. Xie, J. Qin, C. L. Raston, B. Z. Tang, Y. Tang, Mater. Chem. Front. 2020, 4, 537.

[44]

J. Tavakoli, N. Joseph, C. L. Raston, Y. Tang, Nanoscale Adv. 2020, 2, 633.

[45]

J. Tavakoli, N. Joseph, C. Chuah, C. L. Raston, Y. Tang, Mater. Chem. Front. 2020, 4, 2126.

[46]

W. Wu, M. Shen, X. Liu, L. Shen, X. Ke, W. Li, Biosens. Bioelectron. 2020, 150, 111912.

[47]

J. Chang, H. Li, T. Hou, W. Duan, F. Li, Biosens. Bioelectron. 2018, 104, 152.

[48]

H. Guan, W. Wang, Z. Jiang, B. Zhang, Z. Ye, J. Zheng, W. Chen, Y. Liao, Y. Zhang, Adv. Mater. 2024, 36, 2312081.

[49]

B. Cai, J. Dong, B. Su, Q. Yang, C. Wang, L. Yang, Z. Song, J. Liu, R. Jin, Y. Li, Adv. Funct. Mater. 2024, 34, 2312260.

[50]

X. Zhang, X. Liu, H. Yu, S. Shen, J. Zhi, Z. Gao, J. Xin, J. Song, L. Shao, C. Meng, F. An, T. Huo, S. Liu, Y. Zhang, L. Xu, G. Li, Aggregate 2023, 4, e381.

[51]

Z. Zhao, Z. Wang, J. Tavakoli, G. Shan, J. Zhang, C. Peng, Y. Xiong, X. Zhang, T. S. Cheung, Y. Tang, B. Huang, Z. Yu, J. W. Y. Lam, B. Z. Tang, Aggregate 2021, 2, e36.

[52]

Z. Song, Y. Hong, R. T. Kwok, J. W. Lam, B. Liu, B. Z. Tang, J. Mater. Chem. B 2014, 2, 1717.

[53]

M. Zhao, Y. Gao, S. Ye, J. Ding, A. Wang, P. Li, H. Shi, Analyst 2019, 144, 6262.

[54]

X. Cai, C. J. Zhang, F. Ting Wei Lim, S. J. Chan, A. Bandla, C. K. Chuan, F. Hu, S. Xu, N. V. Thakor, L. D. Liao, Small 2016, 12, 6576.

[55]

M. Gao, J. Chen, G. Lin, S. Li, L. Wang, A. Qin, Z. Zhao, L. Ren, Y. Wang, B. Z. Tang, ACS Appl. Mater. Interfaces 2016, 8, 17878.

[56]

M. Gao, Y. Li, X. Chen, S. Li, L. Ren, B. Z. Tang, ACS Appl. Mater. Interfaces 2018, 10, 14410.

[57]

X. Wang, P. Chen, H. Yang, J. Liu, R. Tu, H.-T. Feng, H. Dai, ACS Appl. Mater. Interfaces 2023, 15, 25382.

[58]

X. Han, Y. Ma, Y. Chen, X. Wang, Z. Wang, Anal. Chem. 2020, 92, 2830.

[59]

J. Chen, L. Chen, Z. She, F. Zeng, S. Wu, Aggregate 2024, 5, e419.

[60]

W. Wang, G. Zhang, Z. Chen, H. Xu, B. Zhang, R. Hu, A. Qin, Y. Hua, Bio- Des. Manuf. 2023, 6, 704.

[61]

Y. Zhang, X. Kang, J. Li, J. Song, X. Li, W. Li, J. Qi, ACS Nano 2024, 18, 2231.

[62]

M. T. Mertens, J. A. Singh, Open Orthop. J. 2011, 5, 92.

[63]

D. R. Sumner, R. Ross, E. Purdue, Clin. Orthop. Relat. Res. 2014, 472, 3728.

[64]

S. Hasan, P. van Schie, B. L. Kaptein, J. W. Schoones, P. J. Marang-van de Mheen, R. G. Nelissen, EFORT Open Rev. 2024, 9, 25.

[65]

S. Goodman, E. Gibon, J. Pajarinen, T.-H. Lin, M. Keeney, P.-G. Ren, C. Nich, Z. Yao, K. Egashira, F. Yang, J. R. Soc., Interface 2014, 11, 20130962.

[66]

L. C. Hofbauer, M. Schoppet, JAMA, J. Am. Med. Assoc. 2004, 292, 490.

[67]

R. B. Kimble, S. Srivastava, F. P. Ross, A. Matayoshi, R. Pacifici, J. Biol. Chem. 1996, 271, 28890.

[68]

J. Lam, S. Takeshita, J. E. Barker, O. Kanagawa, F. P. Ross, S. L. Teitelbaum, J. Clin. Invest. 2000, 106, 1481.

[69]

A. S. Shanbhag, C. T. Hasselman, H. E. Rubash, Clin. Orthop. Relat. Res. 1997, 344, 4.

[70]

J. Pajarinen, T. Lin, E. Gibon, Y. Kohno, M. Maruyama, K. Nathan, L. Lu, Z. Yao, S. B. Goodman, Biomaterials 2019, 196, 80.

[71]

A. Insua, A. Monje, H. L. Wang, R. J. Miron, J. Biomed. Mater. Res., Part A 2017, 105, 2075.

[72]

T. R. Green, J. Fisher, J. B. Matthews, M. H. Stone, E. Ingham, J. Biomed. Mater. Res. 2000, 53, 490.

[73]

L. Gilbert, X. He, P. Farmer, S. Boden, M. Kozlowski, J. Rubin, M. S. Nanes, Endocrinology 2000, 141, 3956.

[74]

M. A. Terkawi, G. Matsumae, T. Shimizu, D. Takahashi, K. Kadoya, N. Iwasaki, Int. J. Mol. Sci. 2022, 23, 1786.

[75]

M. Panasiuk, M. Synder, M. Drynkowska-Panasiuk, O. Bończak, Chir. Narzadow Ruchu Ortop. Pol. 2006, 71, 261.

[76]

E. Anitua, M. H. Alkhraisat, A. Eguia, Cureus 2023, 15, e33237.

[77]

N. Cobelli, B. Scharf, G. M. Crisi, J. Hardin, L. Santambrogio, Nat. Rev. Rheumatol. 2011, 7, 600.

[78]

Z. Zheng, T. Zhou, R. Hu, M. Huang, X. Ao, J. Chu, T. Jiang, A. Qin, Z. Zhang, Bioact. Mater. 2020, 5, 1018.

[79]

J. Li, C. W. T. Leung, D. S. H. Wong, J. Xu, R. Li, Y. Zhao, C. Y. Y. Yung, E. Zhao, B. Z. Tang, L. Bian, ACS Appl. Mater. Interfaces 2019, 11, 22074.

[80]

R. Yan, Y. Guo, X. Wang, G. Liang, A. Yang, J. Li, ACS Nano 2022, 16, 8399.

[81]

F.-Y. Cao, Y. Long, S.-B. Wang, B. Li, J.-X. Fan, X. Zeng, X.-Z. Zhang, J. Mater. Chem. B 2016, 4, 4534.

[82]

J. Liang, R. T. K. Kwok, H. Shi, B. Z. Tang, B. Liu, ACS Appl. Mater. Interfaces 2013, 5, 8784.

[83]

Y. Tan, L. Zhang, K. H. Man, R. Peltier, G. Chen, H. Zhang, L. Zhou, F. Wang, D. Ho, S. Q. Yao, Y. Hu, H. Sun, ACS Appl. Mater. Interfaces 2017, 9, 6796.

[84]

F. Zheng, S. Guo, F. Zeng, J. Li, S. Wu, Anal. Chem. 2014, 86, 9873.

[85]

Z. Song, R. T. K. Kwok, E. Zhao, Z. He, Y. Hong, J. W. Y. Lam, B. Liu, B. Z. Tang, ACS Appl. Mater. Interfaces 2014, 6, 17245.

[86]

M. M. Mohamed, B. F. Sloane, Nat. Rev. Cancer 2006, 6, 764.

[87]

K. A. Schleyer, L. Cui, Org. Biomol. Chem. 2021, 19, 6182.

[88]

Y. T. Konttinen, M. Takagi, J. Mandelin, J. Lassus, J. Salo, M. Ainola, T.-F. Li, I. Virtanen, M. Liljestrom, H. Sakai, Y. Kobayashi, T. Sorsa, R. Lappalainen, A. Demulder, S. Santavirta, J. Bone Miner. Res. 2001, 16, 1780.

[89]

R. A. Dodds, I. E. James, D. Rieman, R. Ahern, S. M. Hwang, J. R. Connor, S. D. Thompson, D. F. Veber, F. H. Drake, S. Holmes, J. Bone Miner. Res. 2001, 16, 478.

[90]

Y. Yuan, C. J. Zhang, M. Gao, R. Zhang, B. Z. Tang, B. Liu, Angew. Chem., Int. Ed. 2015, 54, 1780.

[91]

P. Chen, F. Qu, L. He, M. Li, P. Sun, Q. Fan, C. Zhang, D. Li, J. Nanobiotechnol. 2023, 21, 230.

[92]

D. M. Lapierre, N. Tanabe, A. Pereverzev, M. Spencer, R. P. Shugg, S. J. Dixon, S. M. Sims, J. Biol. Chem. 2010, 285, 25792.

[93]

N. Fontaine, L. Harter, A. Marette, D. Boudreau, ACS Omega 2022, 8, 1067.

[94]

S. Sri, G. Lakshmi, P. Gulati, D. Chauhan, A. Thakkar, P. R. Solanki, Anal. Chim. Acta 2021, 1182, 338909.

[95]

M. L. Yola, N. Atar, Anal. Bioanal. Chem. 2021, 413, 2481.

[96]

L. Yang, A. Hou, S. Wang, J. Zhang, W. Man, X. Guo, B. Yang, Q. Wang, H. Jiang, H. Kuang, Anal. Biochem. 2020, 596, 113643.

[97]

S. Noh, H. Lee, J. Kim, H. Jang, J. An, C. Park, M.-H. Lee, T. Lee, Biosens. Bioelectron. 2022, 207, 114159.

[98]

Z. Sun, L. Deng, H. Gan, R. Shen, M. Yang, Y. Zhang, Biosens. Bioelectron. 2013, 39, 215.

[99]

H. Li, X. Li, L. Chen, B. Li, H. Dong, H. Liu, X. Yang, H. Ueda, J. Dong, ACS Omega 2021, 6, 31009.

[100]

H. Yun, H. Ueda, H.-J. Jeong, Biotechnol. Bioprocess Eng. 2022, 27, 846.

[101]

N. Talapphet, C. S. Huh, M.-M. Kim, J. Immunol. Methods 2024, 527, 113648.

[102]

R. Abe, H.-J. Jeong, D. Arakawa, J. Dong, H. Ohashi, R. Kaigome, F. Saiki, K. Yamane, H. Takagi, H. Ueda, Sci. Rep. 2014, 4, 4640.

[103]

C.-I. Chung, R. Makino, Y. Ohmuro-Matsuyama, H. Ueda, J. Biosci. Bioeng. 2017, 123, 272.

[104]

J. Dong, C. Miyake, T. Yasuda, H. Oyama, I. Morita, T. Tsukahara, M. Takahashi, H.-J. Jeong, T. Kitaguchi, N. Kobayashi, H. Ueda, Biosens. Bioelectron. 2020, 165, 112425.

[105]

R. M. Clegg, Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103.

[106]

R. M. Clegg, Lab. Tech. Biochem. Mol. Biol. 2009, 33, 1.

[107]

B. Liu, B. Wang, Z. Wang, Y. Meng, Y. Li, L. Li, J. Wang, M. Zhai, R. Liu, F. Wei, ACS Appl. Mater. Interfaces 2023, 15, 43503.

[108]

X. Chen, D. Lee, S. Yu, G. Kim, S. Lee, Y. Cho, H. Jeong, K. T. Nam, J. Yoon, Biomaterials 2017, 122, 130.

[109]

Y. Ni, Z. Hai, T. Zhang, Y. Wang, Y. Yang, S. Zhang, G. Liang, Anal. Chem. 2019, 91, 14834.

[110]

X. Chen, X. Ren, Y. Zhu, Z. Fan, L. Zhang, Z. Liu, L. Dong, Z. Hai, Anal. Chem. 2021, 93, 9304.

[111]

M. Minoshima, J. Kikuta, Y. Omori, S. Seno, R. Suehara, H. Maeda, H. Matsuda, M. Ishii, K. Kikuchi, ACS Cent. Sci. 2019, 5, 1059.

[112]

C. Liu, C. Sun, H. Huang, K. Janda, T. Edgington, Cancer Res. 2003, 63, 2957.

[113]

Y. Yuan, S. Ge, H. Sun, X. Dong, H. Zhao, L. An, J. Zhang, J. Wang, B. Hu, G. Liang, ACS Nano 2015, 9, 5117.

[114]

Y. Cui, W. Du, G. Liang, ChemNanoMat 2016, 2, 344.

[115]

R. Hashimoto, M. Minoshima, J. Kikuta, S. Yari, S. D. Bull, M. Ishii, K. Kikuchi, Angew. Chem. Int. Ed. 2020, 59, 20996.

[116]

H. Maeda, T. Kowada, J. Kikuta, M. Furuya, M. Shirazaki, S. Mizukami, M. Ishii, K. Kikuchi, Nat. Chem. Biol. 2016, 12, 579.

[117]

T. Kowada, J. Kikuta, A. Kubo, M. Ishii, H. Maeda, S. Mizukami, K. Kikuchi, J. Am. Chem. Soc. 2011, 133, 17772.

[118]

E. Mijiritsky, L. Ferroni, C. Gardin, O. Peleg, A. Gultekin, A. Saglanmak, L. G. Delogu, D. Mitrecic, A. Piattelli, M. Tatullo, B. Zavan, J. Clin. Med. 2020, 9, 38.

[119]

W. Chen, Z. Li, Y. Guo, Y. Zhou, Z. Zhang, Y. Zhang, G. Luo, X. Yang, W. Liao, C. Li, Cell. Physiol. Biochem. 2015, 35, 1857.

[120]

G. Luo, Z. Li, Y. Wang, H. Wang, Z. Zhang, W. Chen, Y. Zhang, Y. Xiao, C. Li, Y. Guo, P. Sheng, Inflammation 2016, 39, 775.

[121]

M. J. Steinbeck, L. J. Jablonowski, J. Parvizi, T. A. Freeman, J. Arthroplasty 2014, 29, 843.

[122]

S. A. Syggelos, A. J. Aletras, I. Smirlaki, S. S. Skandalis, Biomed. Res. Int. 2013, 2013, 230805.

[123]

F. Qu, Q. Yang, B. Wang, J. You, Talanta 2020, 207, 120289.

[124]

Y.-X. Liang, X.-Y. Sun, D.-Z. Xu, J.-R. Huang, Q. Tang, Z.-L. Lu, R. Liu, Bioorg. Chem. 2022, 119, 105559.

[125]

X. He, Y. Luo, Y. Li, Y. Pan, R. T. K. Kwok, L. He, X. Duan, P. Zhang, A. Wu, B. Z. Tang, J. Li, Aggregate 2024, 5, e396.

[126]

A. Lao, J. Wu, D. Li, A. Shen, Y. Li, Y. Zhuang, K. Lin, J. Wu, J. Liu, Small 2023, 19, 2206919.

[127]

H. Cao, Y. Yang, J. Li, Aggregate 2020, 1, 69.

[128]

W. Zhu, L. Huang, C. Wu, L. Liu, H. Li, Luminescence 2024, 39, e4655.

[129]

S. E. Lee, W. J. Chung, H. B. Kwak, C. H. Chung, K. B. Kwack, Z. H. Lee, H. H. Kim, J. Biol. Chem. 2001, 276, 49343.

[130]

S. Wei, H. Kitaura, P. Zhou, F. P. Ross, S. L. Teitelbaum, J. Clin. Invest. 2005, 115, 282.

[131]

F. Yoshitake, S. Itoh, H. Narita, K. Ishihara, S. Ebisu, J. Biol. Chem. 2008, 283, 11535.

[132]

A. M. Kandahari, X. Yang, A. S. Dighe, D. Pan, Q. Cui, J. Immunol. Res. 2015, 2015, 192415.

[133]

R. Maitra, C. C. Clement, G. M. Crisi, N. Cobelli, L. Santambrogio, PLoS One 2008, 3, e2438.

[134]

R. Maitra, C. C. Clement, B. Scharf, G. M. Crisi, S. Chitta, D. Paget, P. E. Purdue, N. Cobelli, L. Santambrogio, Mol. Immunol. 2009, 47, 175.

[135]

C. Vermes, K. A. Roebuck, R. Chandrasekaran, J. G. Dobai, J. J. Jacobs, T. T. Glant, J. Bone Miner. Res. 2000, 15, 1756.

[136]

M. Lamkanfi, V. M. Dixit, Immunol. Rev. 2009, 227, 95.

[137]

N. Cobelli, B. Scharf, G. M. Crisi, J. Hardin, L. Santambrogio, Nat. Rev. Rheumatol. 2011, 7, 600.

[138]

S. L. Cassel, S. C. Eisenbarth, S. S. Iyer, J. J. Sadler, O. R. Colegio, L. A. Tephly, A. B. Carter, P. B. Rothman, R. A. Flavell, F. S. Sutterwala, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9035.

[139]

L. A. O’Neill, Science 2008, 320, 619.

[140]

I. Takei, M. Takagi, S. Santavirta, H. Ida, M. Ishii, T. Ogino, M. Ainola, Y. T. Konttinen, J. Biomed. Mater. Res. 2000, 52, 613.

[141]

M. Takagi, Y. T. Konttinen, S. Santavirta, T. Sorsa, A. Z. Eisen, L. Nordsletten, A. Suda, Acta Orthop. Scand. 1994, 65, 281.

[142]

M. J. Grant, A. Booth, Health Inf. Libr. J. 2009, 26, 91.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/