Humidity-adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly

Siheng Wang , Lei Zhang , Zhuomin Wang , Zhanqian Song , He Liu , Ziqi Tian , Xu Xu

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e643

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e643 DOI: 10.1002/agt2.643
RESEARCH ARTICLE

Humidity-adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly

Author information +
History +
PDF

Abstract

Poly(vinyl alcohol) (PVA) is biodegradable, recyclable, and has high tensile strength. Therefore, it is ideal for the development of environment-friendly sustainable bioplastics. However, at elevated humidity, the mechanical properties of PVA bioplastic films undergo degradation owing to their intrinsic hydrophilic and hygroscopic nature, hindering their applications. This study proposes a nanoconfined assembly strategy to produce humidity-adaptive, mechanically robust, and recyclable bioplastic film. The strong hydrogen bonds between PVA and cellulose nanofibrils inhibit the penetration of water molecules into the film to promote humidity resistance. Further, the robust coordination interactions between bentonite nanoplates, PVA, and cellulose nanofibrils restrict the slip of polymer chains during deformation, leading to enhanced mechanical properties. Benefiting from the nanoconfined assembly architecture in aggregated composites, the resulting reinforced PVA film simultaneously exhibits strength, stiffness, toughness, fracture energy, and tearing energy of 55.9 MPa, 1,275.6 MPa, 162.9 MJ m-3, 630.9 kJ m-2, and 465.0 kJ m-2, respectively. Moreover, the film maintains a strength of approximately 48.7 MPa even at 80% relative humidity for 180 days. This efficient design strategy applies to diverse scales and structured cellulose biomacromolecules. Moreover, it facilitates the application of recyclable high-performance bioplastic films to settings that require high humidity tolerance.

Keywords

aggregated composites / humidity-adaptive plastics / mechanically robust / nanoconfined / recyclable bioplastic films

Cite this article

Download citation ▾
Siheng Wang, Lei Zhang, Zhuomin Wang, Zhanqian Song, He Liu, Ziqi Tian, Xu Xu. Humidity-adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly. Aggregate, 2024, 5(6): e643 DOI:10.1002/agt2.643

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. MacLeod, H. P. H. Arp, M. B. Tekman, A. Jahnke, Science 2021, 373, 61.

[2]

W. W. Y Lau, Y. Shiran, R. M. Bailey, E. Cook, M. R. Stuchtey, J. Koskella, C. A. Velis, L. Godfrey, J. Boucher, M. B. Murphy, R. C. Thompson, E. Jankowska, A. Castillo Castillo, T. D. Pilditch, B. Dixon, L. Koerselman, E. Kosior, E. Favoino, J. Gutberlet, S. Baulch, M. E. Atreya, D. Fischer, K. K. He, M. M. Petit, U. R. Sumaila, E. Neil, M. V. Bernhofen, K. Lawrence, J. E. Palardy, Science 2020, 369, 1455.

[3]

A. K. Mohanty, F. Wu, R. Mincheva, M. Hakkarainen, J.-M. Raquez, D. F. Mielewski, R. Narayan, A. N. Netravali, M. Misra, Nat. Rev. Methods Primers 2022, 2, 46.

[4]

D. M. Mitrano, M. Wagner, Nat. Rev. Mater. 2021, 7, 71.

[5]

Y. Getzler, R. T. Mathers, Acc. Chem. Res. 2022, 55, 1869.

[6]

S. Lambert, M. Wagner, Chem. Soc. Rev. 2017, 46, 6855.

[7]

J. G. Rosenboom, R. Langer, G. Traverso, Nat. Rev. Mater. 2022, 7, 117.

[8]

R. A. Gross, B. Kalra, Science 2002, 297, 803.

[9]

B. Agostinho, A. J. D. Silvestre, J. A. P. Coutinho, A. F. Sousa, Green Chem. 2023, 25, 13.

[10]

E. Chiellini, A. Corti, S. D’Antone, R. Solaro, Prog. Polym. Sci. 2003, 28, 963.

[11]

E. Chiellini, R. Solaro, Adv. Mater. 1996, 8, 305.

[12]

M. Bachmann, C. Zibunas, J. Hartmann, V. Tulus, S. Suh, G. Guillén-Gosálbez, A. Bardow, Nat. Sustain. 2023, 6, 599.

[13]

C. Jehanno, J. W. Alty, M. Roosen, S. De Meester, A. P. Dove, E. Y. Chen, F. A. Leibfarth, H. Sardon, Nature 2022, 603, 803.

[14]

H. Quan, D. Kisailus, M. A. Meyers, Nat. Rev. Mater. 2020, 6, 264.

[15]

P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301.

[16]

X. Dong, H. Zhao, J. Li, Y. Tian, H. Zeng, M. A. Ramos, T. S. Hu, Q. Xu, iScience 2020, 23, 101749.

[17]

P. K. Panda, K. Sadeghi, J. Seo, Food Packag. Shelf Life 2022, 33, 100904.

[18]

W. Niu, Y. Zhu, R. Wang, Z. Lu, X. Liu, J. Sun, ACS Appl. Mater. Interfaces 2020, 12, 30805.

[19]

R. M. Cywar, G. T. Beckham, Nat. Chem. 2022, 14, 967.

[20]

X. Fang, Y. Qing, Y. Lou, X. Gao, H. Wang, X. Wang, Y. Li, Y. Qin, J. Sun, ACS Mater. Lett. 2022, 4, 1132.

[21]

Y. Li, S. Li, J. Sun, Adv. Mater. 2021, 33, 2007371.

[22]

Z. Bai, K. Jia, C. Liu, L. Wang, G. Lin, Y. Huang, S. Liu, X. Liu, Adv. Funct. Mater. 2021, 31, 2104701.

[23]

B. Bolto, T. Tran, M. Hoang, Z. Xie, Prog. Polym. Sci. 2009, 34, 969.

[24]

T. Pirzada, S. S. Shah, Chem. Eng. Technol. 2014, 37, 620.

[25]

X. Liu, J. Sun, Aggregate 2021, 2, e109.

[26]

N. A Al-Tayyar, A. M. Youssef, R. R Al-Hindi, Food Packag. Shelf Life 2020, 25, 100523.

[27]

A. N. M. A. Haque, M. Naebe, J. Cleaner Prod. 2021, 303, 126983.

[28]

X. Fang, N. Tian, W. Hu, Y. Qing, H. Wang, X. Gao, Y. Qin, J. Sun, Adv. Funct. Mater. 2022, 32, 2208623.

[29]

H. Awada, C. Daneault, Appl. Sci. 2015, 5, 840.

[30]

S.-M. Chen, H.-L. Gao, X.-H. Sun, Z.-Y. Ma, T. Ma, J. Xia, Y.-B. Zhu, R. Zhao, H.-B. Yao, H.-A. Wu, S.-H. Yu, Matter 2019, 1, 412.

[31]

T. Xu, H. Du, H. Liu, W. Liu, X. Zhang, C. Si, P. Liu, K. Zhang, Adv. Mater. 2021, 33, 2101368.

[32]

T. Xu, Q. Song, K. Liu, H. Liu, J. Pan, W. Liu, L. Dai, M. Zhang, Y. Wang, C. Si, H. Du, K. Zhang, Nano Micro Lett. 2023, 15, 98.

[33]

L. Bai, Q. Li, Y. Yang, S. Ling, H. Yu, S. Liu, J. Li, W. Chen, Research 2021, 2021, 1843061.

[34]

W. Liu, B. Pang, M. Zhang, J. Lv, T. Xu, L. Bai, X. M. Cai, S. Yao, S. Huan, C. Si, Aggregate 2024, 5, e486.

[35]

Y. Wang, T. Xu, K. Liu, M. Zhang, X. M. Cai, C. Si, Aggregate 2024, 5, e428.

[36]

P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Science 2007, 318, 80.

[37]

J. Wang, Q. Cheng, L. Lin, L. Jiang, ACS Nano 2014, 8, 2739.

[38]

Z. Wang, S. Wang, L. Zhang, H. Liu, X. Xu, Research 2024, 7, 0298.

[39]

S. Wang, L. Yu, S. Wang, L. Zhang, L. Chen, X. Xu, Z. Song, H. Liu, C. Chen, Nat. Commun. 2022, 13, 3408.

[40]

L. Chen, S. Wang, S. Wang, C. Chen, L. Qi, L. Yu, Z. Lu, J. Huang, J. Chen, Z. Wang, X. W. Shi, Z. Song, H. Liu, C. Chen, ACS Nano 2022, 16, 16414.

[41]

X. Zhao, Y. Wang, X. Chen, X. Yu, W. Li, S. Zhang, X. Meng, Z.-M. Zhao, T. Dong, A. Anderson, A. Aiyedun, Y. Li, E. Webb, Z. Wu, V. Kunc, A. Ragauskas, S. Ozcan, H. Zhu, Matter 2023, 6, 97.

[42]

D. H. Li, Z. M. Han, Q. He, K. P. Yang, W. B. Sun, H. C. Liu, Y. X. Zhao, Z. X. Liu, C. N. Zong, H. B. Yang, Q. F. Guan, S. H. Yu, Adv. Mater. 2023, 35, 2208098.

[43]

L. Liu, M. Zhu, X. Xu, X. Li, Z. Ma, Z. Jiang, A. Pich, H. Wang, P. Song, Adv. Mater. 2021, 33, 2105829.

[44]

M. Kobayash, I. Ando, T. Ishii, S. Amiya, Macromolecules 1995, 28, 6677.

[45]

Z. Pu, J. Huang, J. Li, H. Feng, X. Wang, X. Yin, J. Non-Cryst. Solids 2021, 563, 120817.

[46]

A. Malki, Z. Mekhalif, S. Detriche, G. Fonder, A. Boumaza, A. Djelloul, J. Solid State Chem. 2014, 215, 8.

[47]

L. Zhang, S. Wang, Z. Wang, Z. Liu, X. Xu, H. Liu, D. Wang, Z. Tian, ACS Nano 2023, 17, 13948.

[48]

B. Jiang, C. Chen, Z. Liang, S. He, Y. Kuang, J. Song, R. Mi, G. Chen, M. Jiao, L. Hu, Adv. Funct. Mater. 2019, 30, 1906307.

[49]

R. M. Cywar, N. A. Rorrer, C. B. Hoyt, G. T. Beckham, E. Y. X. Chen, Nat. Rev. Mater. 2021, 7, 83.

[50]

Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354.

[51]

M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, A. K. Mohanty, Prog. Polym. Sci. 2013, 38, 1653.

[52]

P. Sun, S. Wang, Z. Huang, L. Zhang, F. Dong, X. Xu, H. Liu, Green Chem. 2022, 24, 7519.

[53]

S. Xu, Z. Zhou, Z. Liu, P. Sharma, Sci. Adv. 2023, 9, eade3240.

[54]

B. Chen, Q. Chen, S. Xiao, J. Feng, X. Zhang, T. Wang, Sci. Adv. 2021, 7, eabi7233.

[55]

A. M Duraj-Thatte, A. Manjula-Basavanna, N. D. Courchesne, G. I. Cannici, A. Sanchez-Ferrer, B. P. Frank, L. Van’t Hag, S. K. Cotts, D. H. Fairbrother, R. Mezzenga, N. S. Joshi, Nat. Chem. Biol. 2021, 17, 732.

[56]

S. Jiang, Y. Wei, J. Li, X. Li, K. Wang, K. Li, S. Q. Shi, J. Li, Z. Fang, Chem. Eng. J. 2022, 432, 134408.

[57]

F. Wu, M. Misra, A. K. Mohanty, Prog. Polym. Sci. 2021, 117, 101395.

[58]

D. C. Wang, H. Y. Yu, D. Qi, Y. Wu, L. Chen, Z. Li, J. Am. Chem. Soc. 2021, 143, 11620.

[59]

L. Zhang, S. Wang, Z. Wang, Z. Huang, P. Sun, F. Dong, H. Liu, D. Wang, X. Xu, Mater. Horiz. 2023, 10, 2271.

[60]

S. Plimpton, J. Comput. Phys. 1995, 117, 1.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/