Multifaceted regulation of chiroptical properties and self-assembly behaviors of chiral fluorescent polymers

Youling He , Junqian Zhang , Chaoyang Ma , Junkai Liu , Jingjing Guo , Ting Han , Rongrong Hu , Bing Shi Li , Ben Zhong Tang

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e642

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e642 DOI: 10.1002/agt2.642
RESEARCH ARTICLE

Multifaceted regulation of chiroptical properties and self-assembly behaviors of chiral fluorescent polymers

Author information +
History +
PDF

Abstract

The multifaceted regulation of the chiroptical properties and self-assembly behaviors of chiral fluorescent polymers is of great significance yet remains challenging to achieve. Herein, a series of novel salen-based chiral fluorescent polymers with aggregation-induced emission and varied substitution manners were facilely and efficiently synthesized. Multiple factors were systematically investigated on the chiroptical properties and self-assembly performance of these polymers, which include molecular structures, solvent environments, metal coordination, and liquid crystal (LC) assemblies. Sutle change in the solvent composition can lead to diverse assembly morphologies of all these chiral polymers, from single-handed helical fibers, helical toroids or loops, to spherical structures, consequently leading to an aggregation-reduced circular dichroism (CD) phenomenon. The polymers bearing salen units show highly selective and reversible coordination with Zn2+ and can also induce multiple responses in the absorption, luminescence, CD, and circularly polarized luminescence (CPL) of these chiral fluorescent polymers via a coordination- and dissociation-initiated self-assembly tuning. Furthermore, a small amount of the chiral fluorescent polymer in can induce achiral nematic 4-cyano-4′-n-pentylbiphenyl (5CB) to form ordered chiral nematic LC phase with significant improvement in their CD and CPL signal. The absolute absorption and luminescent dissymmetry factors of the resulting supramolecular assemblies can reach the order of 10-1.

Keywords

aggregation-induced emission / chirality / circularly polarized luminescence / fluorescent polymers / selfassembly

Cite this article

Download citation ▾
Youling He, Junqian Zhang, Chaoyang Ma, Junkai Liu, Jingjing Guo, Ting Han, Rongrong Hu, Bing Shi Li, Ben Zhong Tang. Multifaceted regulation of chiroptical properties and self-assembly behaviors of chiral fluorescent polymers. Aggregate, 2024, 5(6): e642 DOI:10.1002/agt2.642

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. M. Hu, S. J. Teat, W. Gong, Z. Zhou, Y. H. Jin, H. X. Chen, J. Y. Wu, Y. Cui, T. Jiang, X. B. Cheng, W. Zhang, Nat. Chem. 2021, 13, 660.

[2]

W. Zheng, T. Ikai, E. Yashima, Angew. Chem. Int. Ed. 2021, 60, 11294.

[3]

T. Leigh, P. Fernandez-Trillo, Nat. Rev. Chem. 2020, 4, 291.

[4]

Z. Fernandez, B. Fernandez, E. Quinoa, F. Freire, J. Am. Chem. Soc. 2021, 143, 20962.

[5]

C. C. Wang, L. Liu, J. Y. Wang, Y. Yan, J. Am. Chem. Soc. 2022, 144, 19714.

[6]

L. X. Ren, X. T. Lu, W. Li, J. T. Yan, A. K. Whittaker, A. F. Zhang, J. Am. Chem. Soc. 2023, 145, 24906.

[7]

X. L. Zha, G. L. Xu, Y. Xiong, Z. Yan, K. Liu, M. F. Li, Y. L. Chen, J. Lu, D. Wang, Adv. Funct. Mater. 2023, 33, 2211956.

[8]

J. Kumaki, S. Sakurai, E. Yashima, Chem. Soc. Rev. 2009, 38, 737.

[9]

N. Ousaka, E. Yashima, Sci. Adv. 2021, 7, eabg5381.

[10]

N. Liu, L. Zhou, Z. Q. Wu, Acc. Chem. Res. 2021, 54, 3953.

[11]

Z. Q. Wu, X. Song, Y. X. Li, L. Zhou, Y. Y. Zhu, Z. Chen, N. Liu, Nat. Commun. 2023, 14, 566.

[12]

L. Xu, Y. J. Wu, R. T. Gao, S. Y. Li, N. Liu, Z. Q. Wu, Angew. Chem. Int. Ed. 2023, 62, e202217234.

[13]

Z. X. Geng, Y. X. Zhang, Y. Zhang, Y. W. Quan, Y. X. Cheng, Angew. Chem. Int. Ed. 2022, 61, e202202718.

[14]

S. L. Cai, Y. H. Huang, S. Y. Xie, S. Wang, Y. Guan, X. H. Wan, J. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202214293.

[15]

Z. C. Shen, Y. T. Sang, T. Y. Wang, J. Jiang, Y. Meng, Y. Q. Jiang, K. Okuro, T. Aida, M. H. Liu, Nat. Commun. 2019, 10, 3976.

[16]

W. Zhang, K. Oki, R. Saha, Y. Hijikata, E. Yashima, T. Ikai, Angew. Chem. Int. Ed. 2023, 62, e202218297.

[17]

M. S. Yang, M. S. Haider, S. Forster, C. Hu, R. Luxenhofer, Macromolecules 2022, 55, 6176.

[18]

D. Yan, Z. F. Wang, Z. J. Zhang, ACC. Chem. Res. 2022, 55, 1047.

[19]

Y. Wu, M. Q. Li, Z. G. Zheng, Z. Q. Yu, W. H. Zhu, J. Am. Chem. Soc. 2023, 145, 12951.

[20]

I. Song, J. Ahn, H. Ahn, S. H. Lee, J. G. Mei, N. A. Kotov, J. H. Oh, Nature 2023, 617, 92.

[21]

J. Liu, Z. P. Song, J. Wei, J. J. Wu, M. Z. Wang, J. G. Li, Y. Ma, B. X. Li, Y. Q. Lu, Q. Zhao, Adv. Mater. 2024, 36, 2306834.

[22]

C. Li, M. Y. Yang, M. Y. Zheng, Z. G. Gu, J. Zhang, Adv. Funct. Mater. 2024, 2401102.

[23]

Z. L. Gong, X. F. Zhu, Z. H. Zhou, C. F. Chen, Y. S. Zhao, Y. W. Zhong, M. H. Liu, S. W. Zhang, D. Yang, B. Z. Tang, B. Zhao, J. P. Deng, Y. P. Zhang, Y. X. Cheng, Y. X. Zheng, S. Q. Zang, H. Kuang, P. F. Duan, M. J. Yuan, Sci. China Chem. 2021, 64, 2060.

[24]

S. F. Du, Y. Q. Jiang, H. J. Jiang, L. Zhang, M. H. Liu, Angew. Chem. Int. Ed. 2024, 63, e202316863.

[25]

X. Y. Zhang, H. Q. Liu, G. L. Zhuang, S. F. Yang, P. W. Du, Nat. Commun. 2022, 12, 3543.

[26]

C. Zhang, S. Li, X. Y. Dong, S. Q. Zang, Aggregate, 2021, 2, e48.

[27]

P. L. Liao, S. H. Zang, T. Y. Wu, H. J. Jin, W. K. Wang, J. B. Huang, B. Z. Tang, Y. Yan, Nat. Commun. 2021, 12, 5496.

[28]

G. Zhang, X. X. Cheng, Y. F. Wang, W. Zhang, Aggregate 2023, 4, e262.

[29]

T. Han, D. Y. Yan, Q. Wu, N. Song, H. K. Zhang, D. Wang, Chin. J. Chem. 2021, 39, 677.

[30]

P. W. Zhou, K. L. Han, Aggregate 2022, 3, e160.

[31]

N. Zhang, H. Chen, Y. J. Fan, L. Zhou, S. Trepout, J. Guo, M. H. Liu, ACS Nano 2018, 12, 4025.

[32]

Q. M. Liu, Q. Xia, Y. Xiong, B. S. Li, B. Z. Tang, Macromolecules 2020, 53, 6288.

[33]

H. W. Yan, Y. L. He, D. Wang, T. Han, B. Z. Tang, Aggregate 2023, 4, e331.

[34]

A. Garci, S. Abid, A. H. G. David, M. D. Codesal, L. Đorđević, R. M. Young, H. Sai, L. L. Bras, A. Perrier, M. Ovalle, P. J. Brown, C. L. Stern, A. G. Campaña, S. I. Stupp, M. R. Wasielewski, V. Blanco, J. F. Stoddart, Angew. Chem. Int. Ed. 2022, 134, e202208679.

[35]

D. S. Wei, Y. Sun, H. Zhu, Q. R. Fu, ACS Nano 2023, 17, 23223.

[36]

N. Lu, X. B. Gao, M. Pan, B. Zhao, J. P. Deng, Macromolecules 2020, 53, 8041

[37]

Y. X. Yuan, J. H. Jia, Y. P. Song, F. Y. Ye, Y. S. Zheng, S. Q. Zang, J. Am. Chem. Soc. 2022, 144, 5389.

[38]

S. Sakthivel, S. Jammi, T. Punniyamurthy, Tetrahedron-Asymmetry 2012, 23, 101.

[39]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[40]

Y. J. Cui, P. P. Zhu, X. L. Shi, X. F. Liao, Y. W. Chen, J. Phys. Chem. C 2021, 19, 10250.

[41]

Y. X. Zhang, H. Li, Z. X. Geng, W. H. Zheng, Y. W. Quan, Y. X. Cheng, ACS Nano 2022, 16, 3173.

[42]

B. Zhao, X. B. Gao, K. Pan, J. P. Deng, ACS Nano 2021, 15, 7463.

[43]

S. Fu, A. M. Pang, X. Guo, Y. L. He, S. L. Song, J. Y. Ge, J. G. Li, W. Li, Y. Xiong, L. Wang, D. Wang, B. Z. Tang, ACS Nano 2022, 16, 12720.

[44]

W. B. Liu, R. T. Gao, L. Zhou, N. Liu, Z. Chen, Z. Q. Wu, Chem. Sci. 2022, 13, 10375.

[45]

A. Gowda, S. K. Pathak, G. A. R. Rohaley, G. Acharjiee, A. Oprandi, R. Williams, M. E. Prévôt, T. Hegmann, Mater. Horiz. 2024, 11, 316.

[46]

G. Salassa, M. J. J. Coenen, S. J. Wezenberg, B. L. M. Hendriksen, S. Speller, J. A. A. W. Elemans, A. W. Kleij, J. Am. Chem. Soc. 2012, 134, 7186.

[47]

C. Grazon, P. Salas-Ambrosio, E. Ibarboure, A. Buol, E. Garanger, M. W. Grinstaff, S. Lecommandoux, C. Bonduelle, Angew. Chem. Int. Ed. 2020, 59, 622.

[48]

W. Gong, W. Wang, J. Q. Dong, X. C. Pan, Y. Liu, H. B. Yang, X. F. Fu, Y. Cui, CCS Chem. 2023, 5, 2736.

[49]

N. V. Hud, I. D. Vilfan, Annu. Rev. Biophys. 2005, 34, 295.

[50]

J. Zhang, Q. M. Liu, W. J. Wu, J. H. Peng, H. K. Zhang, F. Y. Song, B. Z. He, X. Y. Wang, H. Y. Sung, M. Chen, B. S. Li, S. H. Liu, J. W. Y. Lam, B. Z. Tang, ACS Nano 2019, 13, 3618.

[51]

M. J. Eibling, C. M. MacDermaid, Z. Qian, C. J. Lanci, S. J. Park, J. G. Saven, J. Am. Chem. Soc. 2017, 139, 17811.

[52]

D. Babilas, J. Muszyński, A. Milewski, D. P. Leśniak-Ziółkowska, Chem. Eng. J. 2021, 408, 127908.

[53]

Q. Xia, L. M. Meng, T. C. He, G. X. Huang, B. S. Li, B. Z. Tang, ACS Nano 2021, 15, 4956.

[54]

A. Nemati, S. Shadpour, L. Querciagrossa, L. Li, T. Mori, M. Gao, C. Zannoni, T. Hegmann, Nat. Commun. 2018, 9, 3908.

[55]

L. J. Prins, P. Timmerman, D. N. Reinhoudt, J. Am. Chem. Soc. 2001, 123, 10153.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/