Advancing self-healing soy protein hydrogel with dynamic Schiff base and metal-ligand bonds for diabetic chronic wound recovery

Tian Lan , Yabo Dong , Jiajia Shi , Xing Wang , Zejian Xu , Yan Zhang , Lianzhou Jiang , Weibiao Zhou , Xiaonan Sui

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e639

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e639 DOI: 10.1002/agt2.639
RESEARCH ARTICLE

Advancing self-healing soy protein hydrogel with dynamic Schiff base and metal-ligand bonds for diabetic chronic wound recovery

Author information +
History +
PDF

Abstract

To address the unique challenges of diabetic wound healing, wound dressings, particularly multifunctional hydrogels have garnered considerable interest. For the first time, a novel environmentally friendly soy protein-based hydrogel is developed to accelerate the healing of diabetic chronic wounds. Specifically, this hydrogel framework is in direct formation through the dynamic Schiff base between oxidized guar gum and epigallocatechin-3-gallate (EGCG)-modified soy protein isolate. Meantime, the addition of Ag+ enhances the cross-linking of the hydrogel network by forming metal-ligand bonds with the catechol groups in EGCG. Interestingly, the stretchability (up to 380%), swelling, and rheology properties of the hydrogel can be controlled by fine-tuning the density of metal-ligand bonds, endowing them with a high potential for precise matching. Additionally, various dynamic bonds endow hydrogel with excellent self-healing ability, adhesiveness, and injectability. This hydrogel also exhibits good antibacterial properties, biocompatibility, and cell migration capabilities. Both in vivo and in vitro experiments demonstrated the outstanding anti-inflammatory capacity of the hydrogel and its ability to modulate macrophage polarization. Consequently, the hydrogel has proven effective in promoting wound healing in a diabetic full-thickness wound model through enhanced angiogenesis and collagen deposition. This eco-friendly plant protein hydrogel offers a sustainable solution for wound care and environmental protection.

Keywords

antibacterial / anti-inflammatory / diabetes chronic wounds / self-healing / soy protein based-hydrogel

Cite this article

Download citation ▾
Tian Lan, Yabo Dong, Jiajia Shi, Xing Wang, Zejian Xu, Yan Zhang, Lianzhou Jiang, Weibiao Zhou, Xiaonan Sui. Advancing self-healing soy protein hydrogel with dynamic Schiff base and metal-ligand bonds for diabetic chronic wound recovery. Aggregate, 2024, 5(6): e639 DOI:10.1002/agt2.639

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Fonder, G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli, A. J. Mamelak, J. Am. Acad. Dermatol. 2008, 58, 185.

[2]

L. Sheng, Z. Zhang, Y. Zhang, E. Wang, B. Ma, Q. Xu, L. Ma, M. Zhang, G. Pei, J. Chang, Biomaterials 2021, 264, 120414.

[3]

G. C. Gurtner, S. Werner, Y. Barrandon, M. T. Longaker, Nature 2008, 453, 314.

[4]

J. G. Powers, C. Higham, K. Broussard, T. J. Phillips, J. Am. Acad. Dermatol. 2016, 74, 607.

[5]

G. Han, R. Ceilley, Adv. Ther. 2017, 34, 599.

[6]

J. Holl, C. Kowalewski, Z. Zimek, P. Fiedor, A. Kaminski, T. Oldak, M. Moniuszko, A. Eljaszewicz, Cells 2021, 10, 655.

[7]

Y. Lu, H. Li, J. Wang, M. Yao, Y. Peng, T. Liu, Z. Li, G. Luo, J. Deng, Adv. Funct. Mater. 2021, 31, 2105749.

[8]

D. L. Laskin, V. R. Sunil, C. R. Gardner, J. D. Laskin, Annu. Rev. Pharmacol. Toxicol. 2011, 51, 267.

[9]

Y. Qian, Y. Zheng, J. Jin, X. Wu, K. Xu, M. Dai, Q. Niu, H. Zheng, X. He, J. Shen, Adv. Mater. 2022, 34, 2200521.

[10]

H. Wang, Z. Xu, M. Zhao, G. Liu, J. Wu, Biomater. Sci. 2021, 9, 1530.

[11]

E. M. Ahmed, J. Adv. Res. 2015, 6, 105.

[12]

L. Cheng, Z. Cai, T. Ye, X. Yu, Z. Chen, Y. Yan, J. Qi, L. Wang, Z. Liu, W. Cui, Adv. Funct. Mater. 2020, 30, 2001196.

[13]

Z. Zhou, T. Deng, M. Tao, L. Lin, L. Sun, X. Song, D. Gao, J. Li, Z. Wang, X. Wang, Biomaterials 2023, 299, 122141.

[14]

H. Zhang, X. Sun, J. Wang, Y. Zhang, M. Dong, T. Bu, L. Li, Y. Liu, L. Wang, Adv. Funct. Mater. 2021, 31, 2100093.

[15]

W. Liu, B. Pang, M. Zhang, J. Lv, T. Xu, L. Bai, X. Cai, S. Yao, S. Huan, C. Si, Aggregate 2024, 5, e486.

[16]

C. Anzani, F. Boukid, L. Drummond, A. M. Mullen, C. Álvarez, Food Res. Int. 2020, 137, 109575.

[17]

M. A. Asgar, A. Fazilah, N. Huda, R. Bhat, A. Karim, Compr. Rev. Food Sci. Food Saf. 2010, 9, 513.

[18]

X. Sui, T. Zhang, L. Jiang, Annu. Rev. Food Sci. Technol. 2021, 12, 119.

[19]

R. Kumar, V. Choudhary, S. Mishra, I. K. Varma, B. Mattiason, Ind. Crops Prod. 2002, 16, 155.

[20]

M. Santin, L. Ambrosio, Expert Rev. Med. Devices 2008, 5, 349.

[21]

K. B. Chien, R. N. Shah, Acta Biomater. 2012, 8, 694.

[22]

M. Santin, C. Morris, G. Standen, L. Nicolais, L. Ambrosio, Biomacromolecules 2007, 8, 2706.

[23]

N. Varshney, A. K. Sahi, S. Poddar, N. K. Vishwakarma, G. Kavimandan, A. Prakash, S. K. Mahto, ACS Appl. Mater. Inter. 2022, 14, 14033.

[24]

M. Ke, Z. Wang, Q. Dong, F. Chen, L. He, C. Huselstein, X. Wang, Y. Chen, Nanoscale 2021, 13, 15743.

[25]

Z. Peles, M. Zilberman, Acta Biomater. 2012, 8, 209.

[26]

L. Wang, Y. Dong, L. Wang, M. Cui, Y. Zhang, L. Jiang, X. Sui, Food Hydrocolloids 2023, 143, 108905.

[27]

P. Sun, Q. Zhang, Y. Zhao, D. Zhao, X. Zhao, L. Jiang, Y. Zhang, F. Wu, X. Sui, Food Hydrocolloids 2023, 144, 108924.

[28]

Y. Zhao, Z. Wang, Q. Zhang, F. Chen, Z. Yue, T. Zhang, H. Deng, C. Huselstein, D. P. Anderson, P.R. Chang, Int. J. Biol. Macromol. 2018, 118, 1293.

[29]

N. Zhang, N. Yang, L. Zhang, B. Jiang, Y. Sun, J. Ma, K. Cheng, F. Peng, Chem. Eng. J. 2020, 402, 126200.

[30]

A. H. Pandit, S. Nisar, K. Imtiyaz, M. Nadeem, N. Mazumdar, M. M. A. Rizvi, S. Ahmad, Biomacromolecules 2021, 22, 3731.

[31]

Z. Bei, Y. Lei, R. Lv, Y. Huang, Y. Chen, C. Zhu, S. Cai, D. Zhao, Q. You, Y. Cao, ACS Nano 2020, 14, 12546.

[32]

Y. Zhao, R. Tian, M. Cui, Y. Zhang, L. Jiang, B. Tian, X. Sui, Food Hydrocolloids 2023, 145, 109071.

[33]

Z. Wang, Q. Wang, C. Liu, F. He, Z. Song, Q. Qiu, J. Yan, W. Zhu, Vib. Spectrosc. 2020, 107, 103037.

[34]

J. Ma, J. Zhang, Z. Xiong, Y. Yong, X. Zhao, J. Mater. Chem. 2011, 21, 3350.

[35]

H. Wu, X. Huang, M. Gao, X. Liao, B. Shi, Green Chem. 2011, 13, 651.

[36]

X. Huang, C. Ma, Y. Xu, J. Cao, J. Li, J. Li, S.Q. Shi, Q. Gao, Ind. Crops Prod. 2022, 182, 114945.

[37]

X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han, B. Guo, Adv. Funct. Mater. 2020, 30, 1910748.

[38]

J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma, H. Wei, S. , Adv. Funct. Mater. 2022, 32, 2107404.

[39]

J. M. Renkema, Food Hydrocolloids 2004, 18, 39.

[40]

W. Ge, S. Cao, Y. Yang, O.J. Rojas, X. Wang, Chem. Eng. J. 2021, 408, 127306.

[41]

Y. Wang, T. Xu, K. Liu, M. Zhang, X. Cai, C. Si, Aggregate 2024, 5, e428.

[42]

J. Liu, Z. Li, Q. Lin, X. Jiang, J. Yao, Y. Yang, Z. Shao, X. Chen, ACS Sustainable Chem. Eng. 2018, 6, 13730.

[43]

H. Huang, L. Han, J. Li, X. Fu, Y. Wang, Z. Yang, X. Xu, L. Pan, M. Xu, J. Mater. Chem. A 2020, 8, 10291.

[44]

T. Cheng, Y. Z. Zhang, S. Wang, Y. L. Chen, S. Y. Gao, F. Wang, W. Y. Lai, W. Huang, Adv. Funct. Mater. 2021, 31, 2101303.

[45]

L. Fan, Z. He, X. Peng, J. Xie, F. Su, D.-X. Wei, Y. Zheng, D. Yao, ACS Appl. Mater. Interfaces 2021, 13, 53541.

[46]

E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed, O. A. Scherman, J. Am. Chem. Soc. 2010, 132, 14251.

[47]

C. C. Parkins, J. H. McAbee, L. Ruff, A. Wendler, R. Mair, R. J. Gilbertson, C. Watts, O. A. Scherman, Biomaterials 2021, 276, 120919.

[48]

Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang, Z. Li, J. Wang, X. Ren, Y. Zhao, Nat. Commun. 2022, 13, 6758.

[49]

Z. Guo, Z. Zhang, N. Zhang, W. Gao, J. Li, Y. Pu, B. He, J. Xie, Bioact. Mater. 2022, 15, 203.

[50]

Q. Zhang, L. Jiang, X. Sui, Food Hydrocolloids 2023, 135, 108177.

[51]

M. Li, Y. Liang, Y. Liang, G. Pan, B. Guo, Chem. Eng. J. 2022, 427, 132039.

[52]

Y. Wang, C. Chen, J. Cell Mol. Med. 2013, 17, 823.

[53]

X. Chen, W. Du, Z. Cai, S. Ji, M. Dwivedi, J. Chen, G. Zhao, J. Chu, ACS Appl. Mater. Interfaces 2019, 12, 2162.

[54]

Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, ACS Nano 2021, 15, 7078.

[55]

L. Wang, X. Zhang, K. Yang, Y. V. Fu, T. Xu, S. Li, D. Zhang, L. N. Wang, C. S. Lee, Adv. Funct. Mater. 2020, 30, 1904156.

[56]

T. D. Tavares, J. C. Antunes, J. Padrão, A. I. Ribeiro, A. Zille, M. T. P. Amorim, F. Ferreira, H. P. Felgueiras, Antibiotics 2020, 9, 314.

[57]

Y. Liu, F. Li, Z. Guo, Y. Xiao, Y. Zhang, X. Sun, T. Zhe, Y. Cao, L. Wang, Q. Lu, Chem. Eng. J. 2020, 382, 122990.

[58]

G. Huang, F. Li, X. Zhao, Y. Ma, Y. Li, M. Lin, G. Jin, T. J. Lu, G. M. Genin, F. Xu, Chem. Rev. 2017, 117, 12764.

[59]

Z. Xu, S. Han, Z. Gu, J. Wu, Adv. Healthcare Mater. 2020, 9, 1901502.

[60]

H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou, H. Wang, Y. Xu, C. Wang, J. Wang, Z. Liu, Biomaterials 2020, 258, 120286.

[61]

R. J. Snyder, J. Lantis, R. S. Kirsner, V. Shah, M. Molyneaux, M. J. Carter, Wound Repair Regener. 2016, 24, 613.

[62]

A. E. Louiselle, S. M. Niemiec, C. Zgheib, K. W. Liechty, Transl. Res. 2021, 236, 109.

[63]

P. Dorishetty, R. Balu, A. Sreekumar, L. de Campo, J. P. Mata, N. R. Choudhury, N. K. Dutta, ACS Sustainable Chem. Eng. 2019, 7, 9257.

[64]

Y. Yan, K. Wang, Z. Wang, W. Gindl-Altmutter, S. Zhang, J. Li, Cellulose 2017, 24, 4807.

[65]

U. A. Okonkwo, L. A. DiPietro, Int. J. Mol. Sci. 2017, 18, 1419.

[66]

K. Futrega, M. King, W. B. Lott, M. R. Doran, Trends Mol. Med. 2014, 20, 137.

[67]

H. Bai, N. Kyu-Cheol, Z. Wang, Y. Cui, H. Liu, H. Liu, Y. Feng, Y. Zhao, Q. Lin, Z. Li, J. Tissue Eng. 2020, 11, 2041731420947242.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/