Safe transportation and targeted destruction: Albumin encapsulated aggregation-induced emission photosensitizer nanoaggregate for tumor photodynamic therapy through mitochondria damage-triggered pyroptosis

Juanmei Cao , Yong Qu , Shaojie Zhu , Jinshan Zhan , Yiting Xu , Yifan Jin , Yuqing Wang , Zhuoxia Li , Chuxing Chai , Xiangwei Wu , Meng Gao , Changzheng Huang , Min Li

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e637

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e637 DOI: 10.1002/agt2.637
RESEARCH ARTICLE

Safe transportation and targeted destruction: Albumin encapsulated aggregation-induced emission photosensitizer nanoaggregate for tumor photodynamic therapy through mitochondria damage-triggered pyroptosis

Author information +
History +
PDF

Abstract

Photodynamic therapy is a highly recommended alternative treatment for solid tumors, such as cutaneous or luminal tumors, in clinical practice. However, conventional photosensitizers (PSs) often induce undesirable phototoxic effects because of their normal tissue distribution and a reduction in antitumor effects resulting from aggregation-caused quenching effects. The present study developed a novel nanoformulated aggregation-induced emission (AIE)-characteristic PS, nab-TTVPHE, which is composed of human serum albumin as a carrier and TTVPHE as a therapeutic agent, as a more effective cancer treatment with lower phototoxic effects. Notably, the reactive oxygen species generated by TTVPHE were shielded by the nanoaggregate structure, and the photodynamic activity was after nanostructure dissociation. Nab-TTVPHE was actively internalized in tumor cells via secreted protein, acidic and rich in cysteine and released to form nanoaggregates. TTVPHE accumulated in mitochondria, where it triggered mitochondrial damage under light irradiation via its photodynamic activity and induced pyroptosis via the caspase-3/gasdermin E (GSDME) signaling pathway to kill tumor cells. Therefore, this nano-formulated AIE-characteristic PS provides an innovative strategy for cancer treatment with lower phototoxic effect and the ability to boost potential antitumor immunity via GSDME-mediated pyroptosis.

Keywords

aggregation-induced emission / gasdermin E / mitochondria damage / nanoparticle albumin-bound / photodynamic therapy / pyroptosis

Cite this article

Download citation ▾
Juanmei Cao, Yong Qu, Shaojie Zhu, Jinshan Zhan, Yiting Xu, Yifan Jin, Yuqing Wang, Zhuoxia Li, Chuxing Chai, Xiangwei Wu, Meng Gao, Changzheng Huang, Min Li. Safe transportation and targeted destruction: Albumin encapsulated aggregation-induced emission photosensitizer nanoaggregate for tumor photodynamic therapy through mitochondria damage-triggered pyroptosis. Aggregate, 2024, 5(6): e637 DOI:10.1002/agt2.637

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, CA Cancer J. Clin. 2011, 61, 250.

[2]

D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380.

[3]

J. H. Correia, J. A. Rodrigues, S. Pimenta, T. Dong, Z. Yang, Pharmaceutics 2021, 13, 1332.

[4]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, Chem. Rev. 2010, 110, 2795.

[5]

I. J. Macdonald, T. J. Dougherty, J. Porphyrins Phthalocyanines 2001, 05, 105.

[6]

C. Morton, R.-M. Szeimies, A. Sidoroff, A.-M. Wennberg, N. Basset-Seguin, P. Calzavara-Pinton, Y. Gilaberte, G. Hofbauer, R. Hunger, S. Karrer, P. Lehmann, S. Piaserico, C. Ulrich, L. Braathen, Eur. J. Dermatol. 2015, 25, 296.

[7]

P. Chen, T. Yang, P. Shi, J. Shen, Q. Feng, J. Su, Photodiagn. Photodyn. Ther. 2022, 37, 102712.

[8]

S. A. Khan, B. R. Davidson, R. D. Goldin, N. Heaton, J. Karani, S. P. Pereira, W. M. C. Rosenberg, P. Tait, S. D Taylor-Robinson, A. V. Thillainayagam, H. C. Thomas, H. Wasan, Gut 2012, 61, 1657.

[9]

Y. Yu, N. Wang, Y. Wang, Q. Shi, R. Yu, B. Gu, E. P. Maswikiti, H. Chen, Photodiagn. Photodyn. Ther. 2023, 41, 103318.

[10]

S. H. Ibbotson, T. H. Wong, C. A. Morton, N. J. Collier, A. Haylett, K. E. McKenna, R. Mallipeddi, H. Moseley, L. E. Rhodes, D. C. Seukeran, K. A. Ward, M. F. Mohd Mustapa, L. S. Exton, Br. J. Dermatol. 2019, 180, 715729.

[11]

B. Yuan, H. Wu, H. Wang, B. Tang, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2021, 60, 706.

[12]

H. Abrahamse, M. R. Hamblin, Biochem. J. 2016, 473, 347.

[13]

G. Gunaydin, M. E. Gedik, S. Ayan, Front. Chem. 2021, 9, 691697.

[14]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 18, 1740.

[15]

a) J. Sun, X. He, Aggregates 2022, 3, e282. b) Z. Meng, H. Xue, T. Wang, B. Chen, X. Dong, L. Yang, J. Dai, X. Lou, F. Xia, J. Nanobiotechnol. 2022, 20, 344.

[16]

D. Wang, M. M. S. Lee, W. Xu, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Theranostics 2018, 8, 4925.

[17]

D. Chen, T. Xiao, L. Wang, S. Chen, C. Kam, G. Zeng, L. Peng, J. Zhang, M. Li, Y. Dong, Aggregates 2024, e550. https://doi.org/10.1002/agt2.550

[18]

P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregates 2023, 4, e352.

[19]

C. Chai, T. Zhou, J. Zhu, Y. Tang, J. Xiong, X. Min, Q. Qin, M. Li, N. Zhao, C. Wan, Pharmaceutics 2022, 14, 459.

[20]

J.-J. Hu, W. Jiang, L. Yuan, C. Duan, Q. Yuan, Z. Long, X. Lou, F. Xia, Aggregates 2021, 2, 48.

[21]

Y. Gao, Q. C. Zheng, S. Xu, Y. Yuan, X. Cheng, S. Jiang, Q. Y. Kenry, Z. Song, B. Liu, M. Li, Theranostics 2019, 9, 1264.

[22]

Y.-Q. Zhao, L. Yu, L. Zhang, H. Liu, Y. Zhou, J. S. Kim, Aggregates 2024, 5, e503.

[23]

Y. Li, J. Zhuang, Y. Lu, N. Li, M. Gu, J. Xia, N. Zhao, B. Z. Tang, ACS Nano 2021, 15, 20453.

[24]

J. Qi, H. Ou, Q. Liu, D. Ding, Aggregates 2021, 2, 95.

[25]

Y. Li, R. Zhang, Q. Wan, R. Hu, Y. Ma, Z. Wang, J. Hou, W. Zhang, B. Z. Tang, Adv. Sci. 2021, 8, 2102561.

[26]

H. Li, Y. Lu, J. Chung, J. Han, H. Kim, Q. Yao, G. Kim, X. Wu, S. Long, X. Peng, J. Yoon, Chem. Sci. 2021, 12, 10522.

[27]

Q. Fu, J. Sun, W. Zhang, X. Sui, Z. Yan, Z. He, Recent Pat. Anti- Canc. 2009, 4, 262.

[28]

A. Spada, J. Emami, J. A. Tuszynski, A. Lavasanifar, Mol. Pharmaceutics 2021, 18, 1862.

[29]

D. A. Yardley, J. Controlled Release 2013, 170, 365.

[30]

H. Hu, J. Quintana, R. Weissleder, S. Parangi, M. Miller, Adv. Drug Delivery Rev. 2022, 185, 114237.

[31]

C. Li, D. Zhang, Y. Pan, B. Chen, Polymers 2023, 15, 3354.

[32]

Y. Li, D. Zhang, Y. Yu, L. Zhang, L. Li, L. Shi, G. Feng, B. Z. Tang, ACS Nano 2023, 17, 16993.

[33]

K. Ding, L. Wang, J. Zhu, D. He, Y. Huang, W. Zhang, Z. Wang, A. Qin, J. Hou, B. Z. Tang, ACS Nano 2022, 16, 7535.

[34]

X.-T. Yu, S.-Y. Sui, Y.-X. He, C.-H. Yu, Q. Peng, Biotechnol. Adv. 2022, 135, 212725.

[35]

G. M. F Calixto, J. Bernegossi, L. M. de Freitas, C. R. Fontana, M. Chorilli, Molecules 2016, 21, 342.

[36]

T. Zhou, J. Zhu, D. Shang, C. Chai, Y. Li, H. Sun, Y. Li, M. Gao, M. Li, Mater. Chem. Front. 2020, 4, 3201.

[37]

G. Battogtokh, Y. S. Choi, D. S. Kang, S. J. Park, M. S. Shim, K. M. Huh, Y.-Y. Cho, J. Y. Lee, H. S. Lee, H. C. Kang, Acta Pharmacol. Sin. B 2018, 8, 862.

[38]

P. Yu, X. Zhang, N. Liu, L. Tang, C. Peng, X. Chen, Signal Transduct. Target. Ther. 2021, 6, 128.

[39]

X. Shi, Y. Yang, W. Zhang, J. Wang, D. Xiao, H. Ren, T. Wang, F. Gao, Z. Liu, K. Zhou, P. Li, Z. Zhou, P. Zhang, X. Shen, Y. Liu, J. Zhao, Z. Wang, F. Liu, C. Shao, D. Wu, H. Zhang, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2208506119.

[40]

L. Li, D. Song, L. Qi, M. Jiang, Y. Wu, J. Gan, K. Cao, Y. Li, Y. Bai, T. Zheng, Cancer Lett. 2021, 520, 143.

[41]

J. Shi, W. Gao, F. Shao, Trends Biochem. Sci. 2017, 42, 245.

[42]

Y. Wang, W. Gao, X. Shi, J. Ding, W. Liu, H. He, K. Wang, F. Shao, Nature 2017, 547, 99.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/