A novel metal-organic framework encapsulated iridium oxide nanozyme enhanced antisense oligonucleotide combo for osteoarthritis synergistic therapy

Shuqi Wu , Fang Nan , Kewen Zhang , Wan Hao , Di Shi , Yang Li , Wei Deng , Nur Jarhen , Kaixuan Li , Yunyun Xiao , Jun Li , Xiao Lin

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e635

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e635 DOI: 10.1002/agt2.635
RESEARCH ARTICLE

A novel metal-organic framework encapsulated iridium oxide nanozyme enhanced antisense oligonucleotide combo for osteoarthritis synergistic therapy

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is associated with metabolic imbalance of articular cartilage and an increase of intracellular reactive oxygen species (ROS). Synergistic therapy based on the codelivery of ROS scavengers and antisense oligonucleotides (ASO) into chondrocytes has the potential to effectively treat OA. Here, we developed a novel biocompatible metal-organic framework (MOF)-encapsulated nanozyme/ASO delivery platform (miR/IrO2@ZIF-8) for OA treatment. IrO2 nanoparticles with the catalytic activities of superoxide dismutase/catalase were synthesized using a hydrothermal method, resulting in excellent ROS scavenging performance. IrO2 was further loaded into zeolitic imidazolate framework-8 (ZIF-8) to maintain its catalytic efficacy and regulate its size, surface charge, and biocompatibility to enhance the therapeutic effect of the platform. As an effective ASO delivery carrier, the synthesized IrO2@ZIF-8 exhibited high antagomiR-181a loading and lysosomal escape capacity, enabling it to rebalance cartilage metabolism. In vitro experiments showed that miR/IrO2@ZIF-8 could restore ROS levels, mitochondrial membrane potential, and lipid peroxidation in chondrocytes. At the same time, the expression levels of proinflammatory markers (IL-1β, IL-6, and COX-2) as well as the extracellular matrix degrading enzymes (ADAMTS-5 and MMP13) were downregulated, indicating effective antioxidant, anti-inflammatory, and anticartilage degradation effects. Notably, miR/IrO2@ZIF-8 was able to deliver IrO2 nanoparticles and antagomiR-181a to the cartilage tissue at a depth of up to 1.5 mm, thus solving the problems of poor permeability and difficult retention of drugs in cartilage tissue. This further improves the synergistic therapeutic effect on OA by inhibiting cartilage degradation. The combination of MOF-encapsulated IrO2 nanozymes with antagomiR-181a has an excellent therapeutic effect on OA, offering a promising translational medicine paradigm.

Keywords

antisense oligonucleotides / cartilage metabolism / drug delivery / IrO 2 nanozyme / osteoarthritis treatment / reactive oxygen species scavenging / 2’,7’-dichlorodihydrofluorescein diacetate

Cite this article

Download citation ▾
Shuqi Wu, Fang Nan, Kewen Zhang, Wan Hao, Di Shi, Yang Li, Wei Deng, Nur Jarhen, Kaixuan Li, Yunyun Xiao, Jun Li, Xiao Lin. A novel metal-organic framework encapsulated iridium oxide nanozyme enhanced antisense oligonucleotide combo for osteoarthritis synergistic therapy. Aggregate, 2024, 5(6): e635 DOI:10.1002/agt2.635

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Sun, J. Guo, Z. Guo, L. Hou, H. Liu, Y. Hou, J. He, F. Guo, Y. Ye, Ageing Res. Rev. 2023, 90, 102015.

[2]

M. Rahmati, G. Nalesso, A. Mobasheri, M. Mozafari, Ageing Res. Rev. 2017, 40, 20.

[3]

J. Martel-Pelletier, A. J. Barr, F. M. Cicuttini, P. G. Conaghan, C. Cooper, M. B. Goldring, S. R. Goldring, G. Jones, A. J. Teichtahl, J. P. Pelletier, Nat. Rev. Dis. Primers 2016, 2, 16072.

[4]

Y. Wu, J. Li, Y. Zeng, W. Pu, X. Mu, K. Sun, Y. Peng, B. Shen, Int. J. Oral Sci. 2022, 14, 40.

[5]

Y. Zhang, S. Li, P. Jin, T. Shang, R. Sun, L. Lu, K. Guo, J. Liu, Y. Tong, J. Wang, S. Liu, C. Wang, Y. Kang, W. Zhu, Q. Wang, X. Zhang, F. Yin, Y. E. Sun, L. Cui, Nat. Commun. 2022, 13, 2447.

[6]

L. Liu, W. Zhang, T. Liu, Y. Tan, C. Chen, J. Zhao, H. Geng, C. Ma, Redox Biol. 2023, 62, 102663.

[7]

H. Wei, H. Huang, H. He, Y. Xiao, L. Chun, Z. Jin, H. Li, L. Zheng, J. Zhao, Z. Qin, Research 2024, 7, 310.

[8]

W. Wang, J. Duan, W. Ma, B. Xia, F. Liu, Y. Kong, B. Li, H. Zhao, L. Wang, K. Li, Y. Li, X. Lu, Z. Feng, Y. Sang, G. Li, H. Xue, J. Qiu, H. Liu, Adv. Sci. 2023, 10, e2205859.

[9]

J. Guo, C. F. Li, J. J. Lin, Y. Sun, P. Zhang, S. Li, W. Q. Li, X. T. Zhang, Chem. Eng. J. 2024, 485, 149897.

[10]

B. Yu, W. Sun, J. Lin, C. Fan, C. Wang, Z. Zhang, Y. Wang, Y. Tang, Y. Lin, D. Zhou, Adv. Sci. 2024, 11, e2307798.

[11]

J. Xiang, X. Yang, M. Tan, J. Guo, Y. Ye, J. Deng, Z. Huang, H. Wang, W. Su, J. Cheng, L. Zheng, S. Liu, J. Zhong, J. Zhao, Bioact. Mater. 2024, 36, 1.

[12]

Y. Li, J. Yang, X. Chen, H. Hu, N. Lan, J. Zhao, L. Zheng, Biomaterials 2024, 305, 122449.

[13]

J. Cai, L. F. Liu, Z. Qin, S. Liu, Y. Wang, Z. Chen, Y. Yao, L. Zheng, J. Zhao, M. Gao, Research 2023, 6, 68.

[14]

X. Yuan, J. Cen, X. Chen, Z. Jia, X. Zhu, Y. Huang, G. Yuan, J. Liu, J. Colloid Interface Sci. 2022, 605, 851.

[15]

C. Zhang, D. Li, X. Zhang, R. Dai, W. Kang, Y. Li, Q. Liu, M. Gao, Z. Zheng, R. Zhang, Z. Wen, Mater. Today Bio. 2024, 26, 101054.

[16]

H. Wu, Q. Jiang, K. Luo, C. Zhu, M. Xie, S. Wang, Z. Fei, J. Zhao, J. Nanobiotechnol. 2021, 19, 203.

[17]

J. Wu, S. Niu, D. H. Bremner, W. Nie, Z. Fu, D. Li, L. M. Zhu, Adv. Healthc. Mater. 2020, 9, e1901307.

[18]

W. Du, J. Wang, L. Zhou, J. Zhou, L. Feng, C. Dou, Q. Zhang, X. Zhang, Q. Zhao, X. Cai, J. Wu, Y. Zheng, Y. Li, Acta Biomater. 2023, 166, 524.

[19]

T. Ramasamy, H. B. Ruttala, S. Munusamy, N. Chakraborty, J. O. Kim, J. Control. Release 2022, 352, 861.

[20]

C. F. Bennett, Annu. Rev. Med. 2019, 70, 307.

[21]

S. A. Ali, M. J. Peffers, M. J. Ormseth, I. Jurisica, M. Kapoor, Nat. Rev. Rheumatol. 2021, 17, 692.

[22]

Y. Cao, S. Tang, X. Nie, Z. Zhou, G. Ruan, W. Han, Z. Zhu, C. Ding, EBioMedicine 2021, 65, 103283.

[23]

H. Endisha, P. Datta, A. Sharma, S. Nakamura, E. Rossomacha, C. Younan, S. A. Ali, G. Tavallaee, S. Lively, P. Potla, K. Shestopaloff, J. S. Rockel, R. Krawetz, N. N. Mahomed, I. Jurisica, R. Gandhi, M. Kapoor, Arthritis Rheumatol. 2021, 73, 426.

[24]

A. Nakamura, Y. R. Rampersaud, A. Sharma, S. J. Lewis, B. Wu, P. Datta, K. Sundararajan, H. Endisha, E. Rossomacha, J. S. Rockel, I. Jurisica, M. Kapoor, JCI Insight 2016, 1, e86820.

[25]

H. Qi, Z. Zhao, L. Xu, Y. Zhang, Y. Li, L. Xiao, Y. Li, Z. Zhao, J. Fang, Front. Pharmacol. 2022, 13, 898334.

[26]

A. Nakamura, Y. R. Rampersaud, S. Nakamura, A. Sharma, F. Zeng, E. Rossomacha, S. A. Ali, R. Krawetz, N. Haroon, A. V. Perruccio, N. N. Mahomed, R. Gandhi, J. S. Rockel, M. Kapoor, Ann. Rheum. Dis. 2019, 78, 111.

[27]

Y. Liu, M. He, Y. Yuan, C. Nie, K. Wei, T. Zhang, T. Chen, X. Chu, ACS Nano 2023, 17, 7721.

[28]

H. Chen, F. Chen, F. Hu, Y. Li, M. Zhang, Q. Zhou, T. Ding, N. Tulufu, T. Ye, F. Wang, L. Guo, Acta Biomater. 2023, 167, 401.

[29]

F. J. Lyu, Y. F. Zhang, R. N. Zare, J. Ge, Z. Liu, Nano Lett. 2014, 14, 5761.

[30]

Y. F. Cao, X. Y. Li, J. R. Xiong, L. C. Wang, L. T. Yan, J. Ge, Nanoscale 2019, 11, 22108.

[31]

D. Y. Zhang, M. R. Younis, H. Liu, S. Lei, Y. Wan, J. Qu, J. Lin, P. Huang, Biomaterials 2021, 271, 120706.

[32]

L. He, G. Huang, H. Liu, C. Sang, X. Liu, T. Chen, Sci. Adv. 2020, 6, 9751.

[33]

G. Zuo, P. Zhuang, X. Yang, Q. Jia, Z. Cai, J. Qi, L. Deng, Z. Zhou, W. Cui, J. Xiao, Adv. Sci. 2024, 11, e2305023.

[34]

A. Yuan, P. Wu, Z. Zhong, Z. He, W. Li, J. Orthop. Surg. Res. 2022, 17, 304.

[35]

C. Cui, Q. He, J. Wang, J. Kang, W. Ma, Y. Nian, Z. Sun, H. Weng, Int. J. Biol. Macromol. 2023, 247, 125692.

[36]

X. Li, Z. Han, T. Wang, C. Ma, H. Li, H. Lei, Y. Yang, Y. Wang, Z. Pei, Z. Liu, L. Cheng, G. Chen, Biomaterials 2022, 291, 121904.

[37]

Y. Hirata, R. Cai, A. Volchuk, B. E. Steinberg, Y. Saito, A. Matsuzawa, S. Grinstein, S. A. Freeman, Curr. Biol. 2023, 33, 1282.

[38]

R. Deng, R. Zhao, Z. Zhang, Y. Chen, M. Yang, Y. Lin, J. Ye, N. Li, H. Qin, X. Yan, J. Shi, F. Yuan, S. Song, Z. Xu, Y. Song, J. Fu, B. Xu, G. Nie, J. K. Yu, Sci. Transl. Med. 2024, 16, eadh9751.

[39]

X. Zhu, M. Cao, K. Li, Y.-T. Chan, H.-F. Chan, Y.-W. Mak, H. Yao, J. Sun, M. T.-Y. Ong, K. K.-W. Ho, C.-W. Lee, O. K.-S. Lee, P. S.-H. Yung, Y. Jiang, Bioactive Mater. 2024, 39, 255.

[40]

K. Sun, X. Jing, J. Guo, X. Yao, F. Guo, Autophagy 2021, 17, 2082.

[41]

M. Saranya, A. M. da Silva, H. Karjalainen, G. Klinkenberg, R. Schmid, B. McDonagh, P. P. Molesworth, M. S. Sigfúsdóttir, A. M. Wågbo, S. G. Santos, C. Couto, V. P. Karjalainen, S. D. Gupta, T. Järvinen, L. de Roy, A. M. Seitz, M. Finnilä, S. Saarakkala, A. M. Haaparanta, L. Janssen, G. S. Lorite, Adv. Healthc. Mater. 2023, 12, e2301787.

[42]

H. Zhang, Y. Shao, Z. Yao, L. Liu, H. Zhang, J. Yin, H. Xie, K. Li, P. Lai, H. Zeng, G. Xiao, C. Zeng, D. Cai, X. Bai, Ann. Rheum. Dis. 2022, 81, 676.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/