π-Bridge mediated coupling between inter- and intra-molecular charge transfer in aggregates for highly efficient near-infrared emission
Jingyi Xu , Jie Xue , Yu Dai , Jinyuan Zhang , Jiajun Ren , Chengyu Yao , Shaman Li , Qingyu Meng , Xueliang Wen , Haoyun Shao , Juan Qiao
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e634
π-Bridge mediated coupling between inter- and intra-molecular charge transfer in aggregates for highly efficient near-infrared emission
Intermolecular charge transfer (inter-CT) is commonly considered to quench luminescence in molecular aggregates, especially for near-infrared (NIR) emission. Herein, by elaborate comparison of π-bridge effects in donor/acceptor (D/A) molecules, it is disclosed that a π-bridge is essential in D/A molecule to involve inter-CT in aggregates for inducing desired thermally activated delayed fluorescence (TADF) and largely suppressing non-radiative decays, and importantly, electrondonating π-bridge is critical to maximize radiative decay for inter-CT dominated emission by effective electronic coupling with bright intramolecular charge transfer (intra-CT) for high-efficiency NIR emission. As a proof-of-concept, TPATAP with thienyl as π-bridge realized prominent photoluminescence quantum yields of 18.9% at 788 nm in solid films, and achieved record-high maximum external quantum efficiencies of 4.53% at 785 nm in devices. These findings provide fresh insight into interplay between inter-CT and intra-CT in molecular aggregates and open a new avenue to attenuate the limitation of energy gap law for developing highly efficient NIR emitters and improving the luminescent efficiency of various inter-CT systems, such as organic photovoltaic, organic long persistent luminescence, etc.
intermolecular charge transfer / molecular aggregates / near-infrared emission / organic light-emitting diodes / thermally activated delayed fluorescence
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |