π-Bridge mediated coupling between inter- and intra-molecular charge transfer in aggregates for highly efficient near-infrared emission

Jingyi Xu , Jie Xue , Yu Dai , Jinyuan Zhang , Jiajun Ren , Chengyu Yao , Shaman Li , Qingyu Meng , Xueliang Wen , Haoyun Shao , Juan Qiao

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e634

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e634 DOI: 10.1002/agt2.634
RESEARCH ARTICLE

π-Bridge mediated coupling between inter- and intra-molecular charge transfer in aggregates for highly efficient near-infrared emission

Author information +
History +
PDF

Abstract

Intermolecular charge transfer (inter-CT) is commonly considered to quench luminescence in molecular aggregates, especially for near-infrared (NIR) emission. Herein, by elaborate comparison of π-bridge effects in donor/acceptor (D/A) molecules, it is disclosed that a π-bridge is essential in D/A molecule to involve inter-CT in aggregates for inducing desired thermally activated delayed fluorescence (TADF) and largely suppressing non-radiative decays, and importantly, electrondonating π-bridge is critical to maximize radiative decay for inter-CT dominated emission by effective electronic coupling with bright intramolecular charge transfer (intra-CT) for high-efficiency NIR emission. As a proof-of-concept, TPATAP with thienyl as π-bridge realized prominent photoluminescence quantum yields of 18.9% at 788 nm in solid films, and achieved record-high maximum external quantum efficiencies of 4.53% at 785 nm in devices. These findings provide fresh insight into interplay between inter-CT and intra-CT in molecular aggregates and open a new avenue to attenuate the limitation of energy gap law for developing highly efficient NIR emitters and improving the luminescent efficiency of various inter-CT systems, such as organic photovoltaic, organic long persistent luminescence, etc.

Keywords

intermolecular charge transfer / molecular aggregates / near-infrared emission / organic light-emitting diodes / thermally activated delayed fluorescence

Cite this article

Download citation ▾
Jingyi Xu, Jie Xue, Yu Dai, Jinyuan Zhang, Jiajun Ren, Chengyu Yao, Shaman Li, Qingyu Meng, Xueliang Wen, Haoyun Shao, Juan Qiao. π-Bridge mediated coupling between inter- and intra-molecular charge transfer in aggregates for highly efficient near-infrared emission. Aggregate, 2024, 5(6): e634 DOI:10.1002/agt2.634

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. P.Goetz, D.Vermeulen, M. E.Payne, C.Kloc, L. E.McNeil, O. D.Jurchescu, J. Mater. Chem. C 2014, 2, 3065.

[2]

J.Blumberger, Chem. Rev. 2015, 115, 11191.

[3]

H. J.Wörner, C. A. Arrell, N.Banerji, A.Cannizzo, M.Chergui, A. K.Das, P.Hamm, U.Keller, P. M.Kraus, E.Liberatore, P.Lopez-Tarifa, M.Lucchini, M.Meuwly, C.Milne, J.-E.Moser, U. Rothlisberger, G.Smolentsev, J.Teuscher, J. A.van Bokhoven, O. Wenger, Struct. Dynam. 2017, 4, 061508.

[4]

D.Shen, W.-C.Chen, M.-F.Lo, C.-S. Lee, Mater. Today Energy 2021, 20, 100644.

[5]

V.May, O.Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley, Hoboken, NJ 2023.

[6]

C. W.Tang, S. A.VanSlyke, Appl. Phys. Lett. 1987, 51, 913.

[7]

K.Jinnai, R.Kabe, Z.Lin, C. Adachi, Nat. Mater. 2022, 21, 338.

[8]

V.Coropceanu, X.-K.Chen, T.Wang, Z. Zheng, J.-L.Brédas, Nat. Rev. Mater. 2019, 4, 689.

[9]

C.Deibel, T.Strobel, V.Dyakonov, Adv. Mater. 2010, 22, 4097.

[10]

H.Sirringhaus, Adv. Mater. 2014, 26, 1319.

[11]

X.Yang, D.Wang, ACS Appl. Energy Mater. 2018, 1, 6657.

[12]

M.Sarma, K. T.Wong, ACS Appl. Mater. Interfaces 2018, 10, 19279.

[13]

J.Guo, Y.Zhen, H.Dong, W. Hu, J. Mater. Chem. C 2021, 9, 16843.

[14]

H.Uoyama, K.Goushi, K.Shizu, H.Nomura, C.Adachi, Nature 2012, 492, 234.

[15]

V.Jankus, P.Data, D.Graves, C. McGuinness, J.Santos, M. R.Bryce, F. B.Dias, A. P.Monkman, Adv. Funct. Mater. 2014, 24, 6178.

[16]

Y.Hu, Y.-J.Yu, Y.Yuan, Z.-Q. Jiang, L.-S.Liao, Adv. Opt. Mater. 2020, 8, 1901917.

[17]

X.-Q.Wang, Y.Hu, Y.-J.Yu, Q.-S. Tian, W.-S.Shen, W.-Y.Yang, Z.-Q.Jiang, L.-S.Liao, J. Phys. Chem. Lett. 2021, 12, 6034.

[18]

P. A. MDirac, N. H. D. Bohr, Proc. R. Soc. London, Ser. A 1927, 114, 243.

[19]

R.Englman, J.Jortner, Mol. Phys. 1970, 18, 145.

[20]

A.Zampetti, A.Minotto, F.Cacialli, Adv. Funct. Mater. 2019, 29, 1807623.

[21]

H. U.Kim, T.Kim, C.Kim, M. Kim, T.Park, Adv. Funct. Mater. 2022, 33, 2208082.

[22]

S.Sharma, A. K.Pal, J. Mater. Chem. C 2022, 10, 15681.

[23]

H.Ye, D. H.Kim, X.Chen, A. S. D. Sandanayaka, J. U.Kim, E.Zaborova, G.Canard, Y.Tsuchiya, E. Y.Choi, J. W.Wu, F.Fages, J.-L. Bredas, A.D’Aléo, J.-C.Ribierre, C.Adachi, Chem. Mater. 2018, 30, 6702.

[24]

A. J.Gillett, C.Tonnelé, G.Londi, G.Ricci, M.Catherin, D. M. L.Unson, D.Casanova, F.Castet, Y.Olivier, W. M.Chen, E.Zaborova, E. W.Evans, B. H.Drummond, P. J.Conaghan, L.-S.Cui, N. C.Greenham, Y.Puttisong, F.Fages, D.Beljonne, R. H.Friend, Nat. Commun. 2021, 12, 6640.

[25]

J.Xu, Y.Dai, J.Zhang, Z. Jia, Q.Meng, J.Qiao, Adv. Opt. Mater. 2024, 12, 2300989.

[26]

J.Xue, Q.Liang, R.Wang, J. Hou, W.Li, Q.Peng, Z.Shuai, J.Qiao, Adv. Mater. 2019, 31, 1808242.

[27]

J.Xue, J.Xu, J.Ren, Q. Liang, Q.Ou, R.Wang, Z.Shuai, J.Qiao, Sci. China Chem. 2021, 64, 1786.

[28]

H.Wang, J.-X.Chen, Y.-Z.Shi, X. Zhang, L.Zhou, X.-Y.Hao, J.Yu, K.Wang, X.-H. Zhang, Adv. Mater. 2024, 36, 2307725.

[29]

T.Hu, Z.Tu, G.Han, Y. Yi, J. Phys. Chem. C 2021, 125, 1249.

[30]

W.Wei, Z.Yang, X.Chen, T. Liu, Z.Mao, J.Zhao, Z.Chi, J. Mater. Chem. C 2020, 8, 3663.

[31]

L.Yu, M.Shi, Z.Wang, X. Xing, M.Umair Ali, Y.He, H.Meng, ChemPhysChem 2021, 22, 1684.

[32]

Q.Zhang, H.Kuwabara, W. J.Potscavage Jr, S.Huang, Y.Hatae, T.Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070.

[33]

S.Wang, Z.Cheng, X.Song, X. Yan, K.Ye, Y.Liu, G.Yang, Y.Wang, ACS Appl. Mater. Interfaces 2017, 9, 9892.

[34]

A.Shang, T.Lu, H.Liu, C. Du, F.Liu, D.Jiang, J.Min, H.Zhang, P. Lu, J. Mater. Chem. C 2021, 9, 7392.

[35]

R. S.Mulliken, J. Chem. Phys. 1939, 7, 14.

[36]

N. J.Turro, V.Ramamurthy, J. C.Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Books, Melville 2009.

[37]

G. N.Lewis, M.Calvin, Chem. Rev. 1939, 25, 273.

[38]

L. J. EHofer, R. J.Grabenstetter, E. O.Wiig, J. Am. Chem. Soc. 1950, 72, 203.

[39]

U.Balijapalli, R.Nagata, N.Yamada, H.Nakanotani, M.Tanaka, A.D’Aléo, V.Placide, M.Mamada, Y.Tsuchiya, C.Adachi, Angew. Chem. Int. Ed. 2021, 60, 8477.

[40]

J.-F.Cheng, Z.-H.Pan, K.Zhang, Y. Zhao, C.-K.Wang, L.Ding, M.-K.Fung, J.Fan, Chem. Eng. J. 2022, 430, 132744.

[41]

Y.Yu, H.Xing, D.Liu, M. Zhao, H. H. Y.Sung, I. D.Williams, J. W. Y. Lam, G.Xie, Z.Zhao, B. Z.Tang, Angew. Chem. Int. Ed. 2022, 61, e202204279.

[42]

D. G.Congrave, B. H.Drummond, P. J.Conaghan, H.Francis, S. T. E. Jones, C. P.Grey, N. C.Greenham, D.Credgington, H.Bronstein, J. Am. Chem. Soc. 2019, 141, 18390.

[43]

Q.Liang, J.Xu, J.Xue, J. Qiao, Chem. Commun. 2020, 56, 8988.

[44]

J.-F.Liu, X.-Q.Wang, Y.-J.Yu, S.-N. Zou, S.-Y.Yang, Z.-Q.Jiang, L.-S.Liao, Org. Electron. 2021, 91, 106088.

[45]

J.-X.Liang, Y.Tang, X.Wang, K. Zhang, Y.-w.Shih, C.-H.Chen, T.-L.Chiu, P. J.Li, J.-H. Lee, C.-K.Wang, C.-C.Wu, J.Fan, J. Mater. Chem. C 2023, 11, 6981.

[46]

D.Chen, K.Liu, X.Li, B.Li, M.Liu, X. Cai, Y.Ma, Y.Cao, S.-J.Su, J. Mater. Chem. C 2017, 5, 10991.

[47]

D.-H.Kim, A.D’Aléo, X.-K.Chen, A. D. S.Sandanayaka, D. Yao, L.Zhao, T.Komino, E.Zaborova, G.Canard, Y.Tsuchiya, E.Choi, J. W.Wu, F. Fages, J.-L.Brédas, J.-C.Ribierre, C.Adachi, Nat. Photonics 2018, 12, 98.

[48]

T.Lu, F.Chen, J. Comput. Chem. 2012, 33, 580.

[49]

Y.Shirota, J. Mater. Chem. 2005, 15, 75.

[50]

Y.-Z.Shi, K.Wang, S.-L.Zhang, X.-C. Fan, Y.Tsuchiya, Y.-T.Lee, G.-L.Dai, J.-X.Chen, C.-J. Zheng, S.-Y.Xiong, X.-M.Ou, J.Yu, J.-S.Jie, C.-S. Lee, C.Adachi, X.-H.Zhang, Angew. Chem. Int. Ed. 2021, 60, 25878.

[51]

J.Xue, J.Xu, Q.Liang, Y. Dai, R.Wang, Y.Yi, J.Qiao, Adv. Funct. Mater. 2023, 33, 2301312.

[52]

J. E.Subotnik, S.Yeganeh, R. J.Cave, M. A.Ratner, J. Chem. Phys. 2008, 129, 244101.

[53]

N. J.Turro, Modern Molecular Photochemistry, University Science Books, Melville 1991.

[54]

G. W.Robinson, J. Chem. Phys. 1967, 46, 572.

[55]

M.Bixon, J.Jortner, J. W.Verhoeven, J. Am. Chem. Soc. 1994, 116, 7349.

[56]

C.-P.Hsu, Acc. Chem. Res. 2009, 42, 509.

[57]

Z.-Q.You, C.-P.Hsu, Int. J. Quantum Chem. 2014, 114, 102.

[58]

Q.Li, J.Xu, S.Tan, Y. Dai, J.Xue, J.Qiao, Org. Electron. 2022, 110, 106645.

[59]

B.Ma, Z.Ding, D.Liu, Z. Zhou, K.Zhang, D.Dang, S.Zhang, S.-J.Su, W. Zhu, Y.Liu, Chem. Eur. J. 2023, 29, e202301197.

[60]

H.Wang, K.Wang, J.-X.Chen, X. Zhang, L.Zhou, X.-C.Fan, Y.-C.Cheng, X.-Y.Hao, J. Yu, X.-H.Zhang, Adv. Funct. Mater. 2023, 33, 2304398.

[61]

X.-K.Chen, V.Coropceanu, J.-L.Brédas, Nat. Commun. 2018, 9, 5295.

[62]

G.Zhang, X.-K.Chen, J.Xiao, P. C. Y. Chow, M.Ren, G.Kupgan, X.Jiao, C. C. S.Chan, X.Du, R.Xia, Z.Chen, J. Yuan, Y.Zhang, S.Zhang, Y.Liu, Y.Zou, H. Yan, K. S.Wong, V.Coropceanu, N.Li, C. J.Brabec, J.-L. Bredas, H.-L.Yip, Y.Cao, Nat. Commun. 2020, 11, 3943.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/