Chiral-induced highly efficient NIR–photothermal conversion of perylene diimide@silica nanocapsules for photothermal therapy

Yue Zhao , Fuhao An , Jichao Wu , Haining Li , Xueyu Wang , Lanya Jiao , Ying Kong , Jinghan Zhu , Xun Sun , Xu Li , Miao Wang , Yu Zhang , Xuan Sun

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e630

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e630 DOI: 10.1002/agt2.630
RESEARCH ARTICLE

Chiral-induced highly efficient NIR–photothermal conversion of perylene diimide@silica nanocapsules for photothermal therapy

Author information +
History +
PDF

Abstract

Photothermal agents (PTAs) with ultra-high photothermal conversion efficiency (PCE) activated upon near-infrared (NIR) laser irradiation can heat up and destroy tumor cells under low-intensity laser excitation to allow safe and efficient tumor therapy. Herein, an organic PTA with an outstanding PCE of 89.6% is developed from rationally designed perylene diimide (PDI) with electron-donating cyclohexylamine moiety at the bay-positions of its skeleton and chiral phenethylamine (PEA) moiety at its N terminals, termed here PEAPDI. The strong intermolecular interaction between the PDI skeletons induced by PEA together with the intramolecular charge transfer from cyclohexylamine to PDI skeleton severely quenches the fluorescence emission from PEAPDI and significantly enhances its NIR absorption, resulting in super NIR–photothermal conversion. PEAPDI molecules are subsequently encapsulated within silica nanocapsules (SNCs), creating PEAPDI@SNC. Characterized by its small hydrodynamic diameter, monodispersity, high PDI encapsulation efficiency, colloidal stability, and biocompatibility, PEAPDI@SNC exhibits prolonged blood circulation and enhanced permeability and retention effect, enabling targeted accumulation at the tumor site. An in vivo study using a 4T1 tumor–bearing mice model illustrates the agent’s potent tumor ablation capability without side effects at low dosage under NIR laser irradiation (808 nm). The findings demonstrate PEAPDI@SNC’s significant potential as a PTA for tumor treatment.

Keywords

aggregation / chiral / NIR–photothermal conversion / perylene diimide / photothermal therapy

Cite this article

Download citation ▾
Yue Zhao, Fuhao An, Jichao Wu, Haining Li, Xueyu Wang, Lanya Jiao, Ying Kong, Jinghan Zhu, Xun Sun, Xu Li, Miao Wang, Yu Zhang, Xuan Sun. Chiral-induced highly efficient NIR–photothermal conversion of perylene diimide@silica nanocapsules for photothermal therapy. Aggregate, 2024, 5(6): e630 DOI:10.1002/agt2.630

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Wang, Y. Xiang, W. Pan, H. Wang, N. Li, B. Tang, Chem. Sci. 2020, 11, 8055.

[2]

D. Li, W. He, X. Lin, X. Cui, S. Nagl, A. R. Wu, R. T. K. Kwok, R. Wu, B. Z. Tang, Aggregate 2023, 4, e384.

[3]

Y. Ai, M. Q. He, H. Sun, X. Jia, L. Wu, X. Zhang, H. B. Sun, Q. Liang, Adv. Mater. 2023, 35, 2302335.

[4]

X. Wang, X. Wang, S. Jin, N. Muhammad, Z. Guo, Chem. Rev. 2019, 119, 1138.

[5]

R. Chang, Q. Zou, L. Zhao, Y. Liu, R. Xing, X. Yan, Adv. Mater. 2022, 34, 2200139.

[6]

X. Zhen, K. Pu, X. Jiang, Small 2021, 17, 2004723.

[7]

Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 2019, 48, 2053.

[8]

C. Zhou, L. Zhang, T. Sun, Y. Zhang, Y. Liu, M. Gong, Z. Xu, M. Du, Y. Liu, G. Liu, D. Zhang, Adv. Mater. 2021, 33, 2006532.

[9]

G. Feng, G. Zhang, D. Ding, Chem. Soc. Rev. 2020, 49, 8179.

[10]

Y. Zhao, T. Zhao, Y. Cao, J. Sun, Q. Zhou, H. Chen, S. Guo, Y. Wang, Y. Zhen, X. Liang, S. Zhang, ACS Nano 2021, 15, 6517.

[11]

T. Sun, J. Guo, H. Wen, Q. Pei, Q. Wu, D. Hao, C. Dou, Z. Xie, Aggregate 2023, 4, e362.

[12]

P. Zhang, J. Wang, H. Huang, K. Qiu, J. Huang, L. Ji, H. Chao, J. Mater. Chem. B 2017, 5, 671.

[13]

B. Liu, J. Sun, J. Zhu, B. Li, C. Ma, X. Gu, K. Liu, H. Zhang, F. Wang, J. Su, Y. Yang, Adv. Mater. 2020, 32, 2004460.

[14]

X. Weng, J. Liu, Drug Discov. Today 2021, 26, 2045.

[15]

A. R. Rastinehad, H. Anastos, E. Wajswol, J. S. Winoker, J. P. Sfakianos, S. K. Doppalapudi, M. R. Carrick, C. J. Knauer, B. Taouli, S. C. Lewis, A. K. Tewari, J. A. Schwartz, S. E. Canfield, A. K. George, J. L. West, N. J. Halas, Proc. Natl. Acad. Sci. U.S. A. 2019, 116, 18590.

[16]

Q. Chen, C. Wang, Z. Zhan, W. He, Z. Cheng, Y. Li, Z. Liu, Biomaterials 2014, 35, 8206.

[17]

Y. Cai, W. Si, W. Huang, P. Chen, J. Shao, X. Dong, Small 2018, 14, 1704247.

[18]

S. Li, Q. Deng, Y. Zhang, X. Li, G. Wen, X. Cui, Y. Wan, Y. Huang, J. Chen, Z. Liu, L. Wang, C. S. Lee, Adv. Mater. 2020, 32, 2001146.

[19]

X. Y. Ran, P. Chen, Y. Z. Liu, L. Shi, X. Chen, Y. H. Liu, H. Zhang, L. N. Zhang, K. Li, X. Q. Yu, Adv. Mater. 2023, 35, 2210179.

[20]

T. A. Tabish, P. Dey, S. Mosca, M. Salimi, F. Palombo, P. Matousek, N. Stone, Adv. Sci. 2020, 7, 1903441.

[21]

D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu, S. Long, J. Fan, K. Shao, W. Sun, X. Yan, X. Peng, Adv. Mater. 2020, 32, 1907855.

[22]

E. Hemmer, A. Benayas, F. Le Gare, F. Vetrone, Nanoscale Horiz. 2016, 1, 168.

[23]

Y. Qin, G. Li, T. Qi, H. Huang, Mater. Chem. Front. 2020, 4, 1554.

[24]

P. Singh, A. Hirsch, S. Kumar, Trends Analyt. Chem. 2021, 138, 116237.

[25]

T. A. Barendt, W. K. Myers, S. P. Cornes, M. A. Lebedeva, K. Porfyrakis, I. Marques, V. Félix, P. D. Beer, J. Am. Chem. Soc. 2020, 142, 349.

[26]

C. Liu, C. Ji, Z. Fan, R. Ma, M. Yin, Chem. Commun. 2021, 57, 13126.

[27]

M. Sun, W. Yin, X. Dong, W. Yang, Y. Zhao, M. Yin, Nanoscale 2016, 8, 5302.

[28]

K. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012.

[29]

Q. Fan, K. Cheng, Z. Y. Ang, R. Zhang, M. Y. Ang, X. Hu, X. Ma, L. Bu, X. Lu, X. Xiong, W. Huang, H. Zhao, Z. Cheng, Adv. Mater. 2015, 27, 843.

[30]

C. Liu, S. Zhang, J. Li, J. Wei, K. Müllen, M. Yin, Angew. Chem. Int. Ed. 2019, 58, 1638.

[31]

H. Tan, N. S. Liu, B. He, S. Y. Wong, Z. Chen, X. Li, J. Wang, Chem. Commun. 2009, 6240.

[32]

J. Deckers, T. Cardeynaels, L. Lutsen, B. Champagne, W. Maes, Chemphyschem 2021, 22, 1488.

[33]

M. Queste, C. Cadiou, B. Pagoaga, L. Giraudet, N. Hoffmann, New J. Chem. 2010, 34, 2537.

[34]

F. Würthner, V. Stepanenko, Z. Chen, C. R. Saha-Möller, N. Kocher, D. Stalke, J. Org. Chem. 2004, 69, 7933.

[35]

M. J. Ahrens, M. J. Tauber, M. R. Wasielewski, J. Org. Chem. 2006, 71, 2107.

[36]

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.

[37]

R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.

[38]

P. C. Hariharan, J. A. Pople, Theoret. Chim. Acta 1973, 28, 213.

[39]

W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.

[40]

R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.

[41]

Gaussian 09 (Revision D.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT 2009. https://gaussian.com/g09citation/

[42]

W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33.

[43]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[44]

J. Feng, D. Wang, H. Wang, D. Zhang, L. Zhang, X. Li, J. Phys. Org. Chem. 2011, 24, 621.

[45]

L. Zanetti Polzi, R. Djemili, S. Durot, V. Heitz, I. Daidone, B. Ventura, Chem. Eur. J. 2020, 26, 17514.

[46]

J. Li, P. Li, M. Fan, X. Zheng, J. Guan, M. Yin, Angew. Chem. Int. Ed. 2022, 61, e202202532.

[47]

M. Hecht, F. Würthner, Acc. Chem. Res. 2021, 54, 642.

[48]

H. Li, Y. Zhang, B. Chen, Y. Wang, C. Teh, G. H. B. Ng, J. Meng, Z. Huang, W. Dong, M. Y. Tan, X. Sun, X. Sun, X. Li, J. Li, ACS Appl. Bio. Mater. 2019, 2, 1569.

[49]

Y. Wang, G. Xia, M. Tan, M. Wang, Y. Li, H. Wang, Adv. Funct. Mater. 2022, 32, 2113098.

[50]

R. Jiang, J. Dai, X. Dong, Q. Wang, Z. Meng, J. Guo, Y. Yu, S. Wang, F. Xia, Z. Zhao, X. Lou, B. Z. Tang, Adv. Mater. 2021, 33, 2101158.

[51]

P. Sun, P. Yuan, G. Wang, W. Deng, S. Tian, C. Wang, X. Lu, W. Huang, Q. Fan, Biomacromolecules 2017, 18, 3375.

[52]

C. L. West, A. C. V. Doughty, K. Liu, W. R. Chen, J. Bio-X Res. 2019, 2, 159.

[53]

Y. Lyu, J. Zeng, Y. Jiang, X. Zhen, T. Wang, S. Qiu, X. Lou, M. Gao, K. Pu, ACS Nano 2018, 12, 1801.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/