Dynamic response and discrimination of gaseous sarin using a boron-difluoride complex film-based fluorescence sensor

Zhijie Zhou , Lei Zhang , Lingya Peng , Yingjie Li , Xiaolin Zhu , Yidi Wu , Zebiao Qiu , Gang He , Molin Qin , Haonan Peng , Yu Fang

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e629

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e629 DOI: 10.1002/agt2.629
RESEARCH ARTICLE

Dynamic response and discrimination of gaseous sarin using a boron-difluoride complex film-based fluorescence sensor

Author information +
History +
PDF

Abstract

This study presents a novel boron-difluoride complex-based fluorescent nanofilm sensor capable of detecting sarin vapors in the environment by reporting an output fluorescence signal. The sensor’s evaluation demonstrated an exceptionally low detection limit for sarin vapor, even in the presence of various interfering gases, with theoretical and practical limits of detection of 0.7 and 1 ppb, respectively. The sensor featured a rapid response time (less than 2 s), a broad linear detection range (1 ppb–1000 ppm), and superior selectivity for sarin vapor over a group of interfering analytes, outperforming existing sarin sensors. Mechanistic study indicates that the sensor’s heightened sensitivity to sarin vapor is due to the robust affinity of nitrogen atoms within the core BODIQ unit for sarin. Additionally, the tetraphenylethylene structure with steric hindrance effectively inhibits the tight packing of BODIQ derivatives, and forms numerous microporous structures in the self-assembled nanofilm, which are beneficial for the mass transfer, enhancing the sensor efficiency in detecting vapors. Furthermore, we have achieved the differentiation of sarin, diethyl chlorophosphate, and HCl vapor through the analysis of sensing kinetic. This fluorescent sensor opens new avenues for sustainable, low-cost, and environment-friendly portable devices, as well as for environmental monitoring and tracking applications.

Keywords

boron-difluoride complex / fluorescent film sensors (FFSs) / sarin / tetraphenylethylene (TPE)

Cite this article

Download citation ▾
Zhijie Zhou, Lei Zhang, Lingya Peng, Yingjie Li, Xiaolin Zhu, Yidi Wu, Zebiao Qiu, Gang He, Molin Qin, Haonan Peng, Yu Fang. Dynamic response and discrimination of gaseous sarin using a boron-difluoride complex film-based fluorescence sensor. Aggregate, 2024, 5(6): e629 DOI:10.1002/agt2.629

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. K. Sydnes, Nature 2020, 583, 28.

[2]

R. C. Gupta, Handbook of Toxicology of Chemical Warfare Agents, Academic Press, Boston, 2015.

[3]

D. A. Jett, C. A. Sibrizzi, R. B. Blain, P. A. Hartman, P. J. Lein, K. W. Taylor, A. A. Rooney, Crit. Rev. Toxicol. 2020, 50, 474.

[4]

V. Kumar, H. Kim, B. Pandey, T. D. James, J. Yoon, E. V. Anslyn, Chem. Soc. Rev. 2023, 52, 663.

[5]

C. E. Davidson, M. M. Dixon, B. R. Williams, G. K. Kilper, S. H. Lim, R. A. Martino, P. Rhodes, M. S. Hulet, R. W. Miles, A. C. Samuels, ACS Sens. 2020, 5, 1102.

[6]

M. Mahato, S. Ahamed, N. Tohora, T. Sultana, S. Ghanta, S. K. Das, Microchem. J. 2023, 185, 108240.

[7]

T. Sultana, N. Tohora, S. Ahamed, M. Mahato, S. Ghanta, S. K. Das, Microchem. J. 2023, 193, 109095.

[8]

N. Tohora, M. Mahato, A. Maiti, S. Ahamed, J. Chourasia, P. Sarkar, S. K. Das, Microchem. J. 2024, 200, 110298.

[9]

H. Teymourian, M. Parrilla, J. R. Sempionatto, N. F. Montiel, A. Barfidokht, R. Van Echelpoel, K. De Wael, J. Wang, ACS Sens. 2020, 5, 2679.

[10]

R. K. Mishra, K. Y. Goud, Z. Li, C. Moonla, M. A. Mohamed, F. Tehrani, H. Teymourian, J. Wang, J. Am. Chem. Soc. 2020, 142, 5991.

[11]

Y. Pan, C. Yan, X. Gao, J. Yang, T. Guo, L. Zhang, W. Wang, Microsyst. Nanoeng. 2024, 10, 4.

[12]

Y. Pan, M. Qin, P. Wang, L. Yang, L. Zhang, C. Yan, C. Zhang, W. Wang, ACS Sens. 2022, 7, 612.

[13]

V. P. Nguyen, W. Qian, Y. Li, B. Liu, M. Aaberg, J. Henry, W. Zhang, X. Wang, Y. M. Paulus, Nat. Commun. 2021, 12, 34.

[14]

J. Rodrigues, A. Amin, S. Chandra, N. J. Mulla, G. S. Nayak, S. Rai, S. Ray, K. K. Mahato, ACS Sens. 2024, 9, 589.

[15]

C. R. Raghushaker, J. Rodrigues, S. G. Nayak, S. Ray, A. S. Urala, K. Satyamoorthy, K. K. Mahato, Anal. Chem. 2021, 93, 16520.

[16]

C. R. Jabbour, L. A. Parker, E. M. Hutter, B. M. Weckhuysen, Nat. Rev. Chem. 2021, 5, 370.

[17]

P. Q. Nguyen, L. R. Soenksen, N. M. Donghia, N. M Angenent-Mari, H. de Puig, A. Huang, R. Lee, S. Slomovic, T. Galbersanini, G. Lansberry, Nat. Biotechnol. 2021, 39, 1366.

[18]

M. K. Handzlik, J. M. Gengatharan, K. E. Frizzi, G. H. McGregor, C. Martino, G. Rahman, A. Gonzalez, A. M. Moreno, C. R. Green, L. S. Guernsey, Nature 2023, 614, 118.

[19]

R. D. Gupta, M. Goldsmith, Y. Ashani, Y. Simo, G. Mullokandov, H. Bar, M. Ben-David, H. Leader, R. Margalit, I. Silman, J. L. Sussman, D. S. Tawfik, Nat. Chem. Biol. 2011, 7, 120.

[20]

S. Fan, G. Zhang, G. H. Dennison, N. FitzGerald, P. L. Burn, I. R. Gentle, P. E. Shaw, Adv. Mater. 2020, 32, 1905785.

[21]

H. Peng, L. Ding, Y. Fang, J. Phys. Chem. Lett. 2024, 15, 849.

[22]

M. H. Chua, H. Zhou, Q. Zhu, B. Z. Tang, J. W. Xu, Mater. Chem. Front. 2021, 5, 659.

[23]

N. Ding, T. Liu, H. Peng, J. Liu, L. Ding, Y. Fang, Sci. Bull. 2023, 68, 546.

[24]

F. Gomollón-Bel, Chem. Int. 2022, 44, 4.

[25]

R. Huang, M. Li, D. Lin, Y. Shao, C. Shang, Q. Liu, G. Liu, N. Li, R. Miao, H. Peng, Y. Tang, Y. Fang, Aggregate 2023, 4, e203.

[26]

J. Zhang, Z. Shi, K. Liu, Q. Shi, L. Yi, J. Wang, L. Peng, T. Liu, M. Ma, Y. Fang, Angew. Chem. Int. Ed. 2023, 62, e202314996.

[27]

K. Liu, J. Zhang, Q. Shi, L. Ding, T. Liu, Y. Fang, J. Am. Chem. Soc. 2023, 145, 7408.

[28]

S. Zhang, B. Yang, B. Yuan, C. Zhou, M. Zhang, Y. Zhao, P. Ye, L. Li, H. Li, ACS Sens. 2023, 8, 1220.

[29]

C. Yan, Z. Guo, W. Chi, W. Fu, S. A. A. Abedi, X. Liu, H. Tian, W.-H. Zhu, Nat. Commun. 2021, 12, 3869.

[30]

Q. Chen, J. Liu, S. Liu, J. Zhang, L. He, R. Liu, H. Jiang, X. Han, K. Zhang, Anal. Chem. 2023, 95, 4390.

[31]

B. Zhu, R. Sheng, T. Chen, J. Rodrigues, Q.-H. Song, X. Hu, L. Zeng, Coord. Chem. Rev. 2022, 463, 214527.

[32]

W.-Q. Meng, A. C. Sedgwick, N. Kwon, M. Sun, K. Xiao, X.-P. He, E. V. Anslyn, T. D. James, J. Yoon, Chem. Soc. Rev. 2023, 52, 601.

[33]

X. Du, Y. Gong, Y. Ren, L. Fu, R. Duan, Y. Zhang, Y. Zhang, J. Zhao, Y. Che, Anal. Chem. 2022, 94, 16418.

[34]

W. Xiong, Y. Gong, Y. Che, J. Zhao, Anal. Chem. 2019, 91, 1711.

[35]

Y. Fu, J. Yu, K. Wang, H. Liu, Y. Yu, A. Liu, X. Peng, Q. He, H. Cao, J. Cheng, ACS Sens. 2018, 3, 1445.

[36]

X. Huang, Z. Jiao, Z. Guo, J. Yang, P. Alam, Y. Liu, Y. Men, P. Zhang, H. Feng, S. Yao, ACS Mater. Lett. 2021, 3, 249.

[37]

M. A. S Khan, M. K. Kesharwani, T. Bandyopadhyay, B. Ganguly, J. Mol. Struct. Theochem. 2010, 944, 132.

[38]

Z. Yan, X. Liu, B. Ding, J. Yu, Y. Si, Nat. Commun. 2023, 14, 2116.

[39]

Q. Y. Wang, Z.-B. Sun, M. Zhang, S. N. Zhao, P. Luo, C.-H. Gong, W.-X. Liu, S.-Q. Zang, J. Am. Chem. Soc. 2022, 144, 21046.

[40]

Y. Gong, Y. Guo, C. Qiu, Z. Zhang, F. Zhang, Y. Wei, S. Wang, Y. Che, J. Wei, Z. Yang, Sci. China Mater. 2021, 64, 1189.

[41]

N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, R. Q. Snurr, Chem. Soc. Rev. 2017, 46, 3357.

[42]

M. Safarkhani, H. Kim, S. Han, F. Taghavimandi, Y. Park, R. Umapathi, Y. S. Jeong, K. Shin, Y. S. Huh, Coord. Chem. Rev. 2024, 509, 215804.

[43]

D. Wang, R. Liu, C. Chen, S. Wang, J. Chang, C. Wu, H. Zhu, E. R. Waclawik, Dyes Pigm. 2013, 99, 240.

[44]

X. Zhu, R. Liu, Y. Li, H. Huang, Q. Wang, D. Wang, X. Zhu, S. Liu, H. Zhu, Chem. Commun. 2014, 50, 12951.

[45]

D. Wang, X. Wang, S. Zhou, P. Gu, X. Zhu, C. Wang, Q. Zhang, Coord. Chem. Rev. 2023, 482, 215074

[46]

X. Zhu, H. Huang, R. Liu, X. Jin, Y. Li, D. Wang, Q. Wang, H. Zhu, J. Mater. Chem. C 2015, 3, 3774.

[47]

R. Tsyshevsky, M. McEntee, E. M. Durke, C. Karwacki, M. M. Kuklja, ACS Appl. Mater. Interfaces 2020, 13, 696.

[48]

S. Fan, A. S. Loch, K. Vongsanga, G. H. Dennison, P. L. Burn, I. R. Gentle, P. E. Shaw, Small Methods 2024, 8, 2301048.

[49]

J. Liu, H. Zhang, L. Hu, J. Wang, J. W. Lam, L. Blancafort, B. Z. Tang, J. Am. Chem. Soc. 2022, 144, 7901.

[50]

J. Zhang, T. Bai, W. Liu, M. Li, Q. Zang, C. Ye, J. Z. Sun, Y. Shi, J. Ling, A. Qin, Nat. Commun. 2023, 14, 3524.

[51]

Y. Li, A. Yagi, K. Itami, J. Am. Chem. Soc. 2020, 142, 3246.

[52]

C. Zhou, Z. Ding, W. Guan, B. Z. Tang, Aggregate 2023, 4, e366.

[53]

C. J. Evoniuk, G. d. P. Gomes, S. P. Hill, S. Fujita, K. Hanson, I. V. Alabugin, J. Am. Chem. Soc. 2017, 139, 16210.

[54]

T. Y. Wang, H. Ji, D. Everton, A. T. Le, S. M. Krylova, R. Fournier, S. N. Krylov, Anal. Chem. 2023, 95, 15826.

[55]

C. L. Perrin, A. Shrinidhi, Chem. Sci. 2020, 11, 8489.

[56]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[57]

Z. Wang, T. Liu, H. Peng, Y. Fang, J. Phys. Chem. B 2023, 127, 828.

[58]

Z. Wang, X. Gou, Q. Shi, K. Liu, X. Chang, G. Wang, W. Xu, S. Lin, T. Liu, Y. Fang, Angew. Chem. Int. Ed. 2022, 134, e202207619.

[59]

Q. Liu, R. Huang, J. Tang, H. Zhang, M. Liu, Y. Fang, Anal. Chem. 2024, 96, 2559.

[60]

J. Liang, D. Hu, W. Xu, L. Peng, K. Liu, Y. Fang, Anal. Chem. 2024, 96, 2152.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/