Sulfato-β-cyclodextrin induced multivalent supramolecular directional aggregation of cyanovinylene derivatives for achieving reversible near-infrared fluorescence

Zhixue Liu , Haiqi Chen , Mengdi Tian , Xinyao Sun , Yong-Xue Li , Jie Wu , Ruotong Wang , Bin Li , Chunju Li , Yu Liu

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e627

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e627 DOI: 10.1002/agt2.627
RESEARCH ARTICLE

Sulfato-β-cyclodextrin induced multivalent supramolecular directional aggregation of cyanovinylene derivatives for achieving reversible near-infrared fluorescence

Author information +
History +
PDF

Abstract

Molecular aggregation or supramolecular aggregation-induced emission is one of the research hotspots in chemistry, biology, and materials. Herein, we report negatively charged sulfato-β-cyclodextrin (SCD) induced cyanovinylene derivatives (DPy-6C) directional aggregation to form regular nanorods (DPy-6C@SCD) through supramolecular multivalent interactions, not only achieves ultravioletvisible absorption redshifted from 453 to 521 nm but also displays near-infrared (NIR) aggregation-induced emission with a large spectral redshift of 135 nm. The DPy-6C monomer presents random nanosheets with weak fluorescence but obtains regular aggregates after assembly with SCD through electrostatic interactions. In the presence of H+, the DPy-6C@SCD can further aggregate into elliptical nanosheets without fluorescence changes due to the protonation of secondary amines. In contrast, the morphology of DPy-6C@SCD becomes flexible and sticks together upon the addition of OH with an emission blue shift of 72 nm and a 90-fold intensity increase because of disrupting the stacking mode of aggregates, thereby achieving acid-base regulated reversible fluorescence behaviors that cannot be realized by DPy-6C monomer. The DPy-6C@SCD can efficiently select the detection of volatile organic amines both in liquid and gas phases within 5 s at the nanomolar level. Taking advantage of RGB analysis and calculation formula application, the DPy-6C@SCD has been successfully used to monitor various organic amines on a smartphone, accompanied by naked-eye visible photoluminescence. Therefore, the present research provides an efficient directional aggregation method through supramolecular multivalent interactions, which not only realizes topological morphology transformation but also achieves reversible NIR luminescent molecular switch and high sensitivity organic amines fluorescent sensing devices.

Keywords

directional aggregation / multicharged cyclodextrins / near-infrared fluorescence emission / smartphone detection / supramolecular aggregates

Cite this article

Download citation ▾
Zhixue Liu, Haiqi Chen, Mengdi Tian, Xinyao Sun, Yong-Xue Li, Jie Wu, Ruotong Wang, Bin Li, Chunju Li, Yu Liu. Sulfato-β-cyclodextrin induced multivalent supramolecular directional aggregation of cyanovinylene derivatives for achieving reversible near-infrared fluorescence. Aggregate, 2024, 5(6): e627 DOI:10.1002/agt2.627

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) C. Ortiz Mellet, J. M. Garcia Fernandez, J. M. Benito, Chem. Soc. Rev. 2011, 40, 1586.b) G. Yu, X. Zhao, J. Zhou, Z. Mao, X. Huang, Z. Wang, B. Hua, Y. Liu, F. Zhang, Z. He, O. Jacobson, C. Gao, W. Wang, C. Yu, X. Zhu, F. Huang, X. Chen, J. Am. Chem. Soc. 2018, 140, 8005.

[2]

a) S. Fu, X. Su, M. Li, S. Song, L. Wang, D. Wang, B. Z. Tang, Adv. Sci. 2020, 7, 2001909. b) W. Zhang, Y. M. Zhang, S. H. Li, Y. L. Cui, J. Yu, Y. Liu, Angew. Chem. Int. Ed. 2016, 55, 11452.

[3]

a) J. Liang, A. Hao, P. Xing, Y. Zhao, ACS Nano 2021, 15, 5322.b) Y. Li, Q. Li, X. Miao, C. Qin, D. Chu, L. Cao, Angew. Chem. Int. Ed. 2021, 60, 6744.

[4]

a) P. Xing, C. Yang, Y. Wang, S. Z. F. Phua, Y. Zhao, Adv. Funct. Mater. 2018, 28, 1802859. b) J. J. Li, Y. Chen, J. Yu, N. Cheng, Y. Liu, Adv. Mater. 2017, 29, 1701905. c) C. Tu, W. Wu, W. Liang, D. Zhang, W. Xu, S. Wan, W. Lu, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202203541. d) Q. Feng, S. Zhu, B. Wang, F. Yu, H. Li, M. Yu, M. Xu, L. Xie, Adv. Funct. Mater. 2023, 34, 2312622.

[5]

a) X. Chen, H. K. Bisoyi, X.-F. Chen, X.-M. Chen, S. Zhang, Y. Tang, G. Zhu, H. Yang, Q. Li, Matter 2022, 5, 3883.b) J. Tang, Y. Tian, Z. Lin, C. Zhang, P. Zhang, R. Zeng, S. Wu, X. Chen, J. Chen, ACS Appl. Mater. Interfaces 2022, 15, 2237.

[6]

a) X.-Y. Dai, M. Huo, Y. Liu, Nat. Rev. Chem. 2023, 7, 854.b) S. Garain, B. C. Garain, M. Eswaramoorthy, S. K. Pati, S. J. George, Angew. Chem. Int. Ed. 2021, 60, 19720.

[7]

a) J. Yi, G. Zou, J. Huang, X. Ren, Q. Tian, Q. Yu, P. Wang, Y. Yuan, W. Tang, C. Wang, L. Liang, Z. Cao, Y. Li, M. Yu, Y. Jiang, F. Zhang, X. Yang, W. Li, X. Wang, Y. Luo, X. J. Loh, G. Li, B. Hu, Z. Liu, H. Gao, X. Chen, Nature 2023, 624, 295.b) I. Roy, J. F. Stoddart, Acc. Chem. Res. 2021, 54, 1440.

[8]

a) Z. Wang, C. Sun, K. Yang, X. Chen, R. Wang, Angew. Chem. Int. Ed. 2022, 61, e202206763. b) J. X. Liu, K. Chen, C. Redshaw, Chem. Soc. Rev. 2023, 52, 1428.c) C. J. Yin, Z. A. Yan, R. J. Yan, C. Xu, B. B. Ding, Y. H. Ji, X. Ma, Adv. Funct. Mater. 2024, 2316008. https://doi.org/10.1002/adfm.202316008. d) L. L. Tan, M. Wei, L. Shang, Y. W. Yang, Adv. Funct. Mater. 2020, 31, 2007277. e) G. Li, Y. M. Li, Aggregate 2022, 3, e161.

[9]

a) J. R. Wu, G. Wu, Y. W. Yang, Acc. Chem. Res. 2022, 55, 3191.b) Y. Mei, Q. W. Zhang, Q. Gu, Z. Liu, X. He, Y. Tian, J. Am. Chem. Soc. 2022, 144, 2351.

[10]

a) H. Duan, Y. Li, Q. Li, P. Wang, X. Liu, L. Cheng, Y. Yu, L. Cao, Angew. Chem. Int. Ed. 2020, 59, 10101.b) I. Roy, A. H. G. David, P. J. Das, D. J. Pe, J. F. Stoddart, Chem. Soc. Rev. 2022, 51, 5557.c) H. T. Feng, Y. X. Yuan, J. B. Xiong, Y. S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 7452.

[11]

a) X. N. Han, Y. Han, C. F. Chen, Chem. Soc. Rev. 2023, 52, 3265.b) Z.-Y. Zhang, C. Li, Acc. Chem. Res. 2022, 55, 916.

[12]

a) J. S. Chen, Q. Y. Peng, X. W. Peng, H. Zhang, H. B. Zeng, Chem. Rev. 2022, 122, 14594.b) R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941.

[13]

a) X. Ma, J. Wang, H. Tian, Acc. Chem. Res. 2019, 52, 738.b) B. Hua, L. Shao, M. Li, H. Liang, F. Huang, Acc. Chem. Res. 2022, 55, 1025.c) R. Jiang, M. Nilam, A. Hennig, W. M. Nau, Adv. Mater. 2023, 36, 2306922.

[14]

a) G. Wu, F. Li, B. Tang, X. Zhang, J. Am. Chem. Soc. 2022, 144, 14962.b) H. Zhu, Q. Li, W. Zhu, F. Huang, Acc. Mater. Res. 2022, 3, 658.c) B. Schmidt, C. Barner-Kowollik, Angew. Chem. Int. Ed. 2017, 56, 8350.

[15]

a) H. Nie, Z. Wei, X.-L. Ni, Y. Liu, Chem. Rev. 2022, 122, 9032.b) N. Barooah, J. Mohanty, A. C. Bhasikuttan, Chem. Commun. 2015, 51, 13225.

[16]

a) Z. Liu, X. Dai, Y. Sun, Y. Liu, Aggregate 2020, 1, 31.b) H. Yan, X. Yin, D. Wang, T. Han, B. Z. Tang, Adv. Sci. 2023, 10, 2305149.

[17]

H.-J. Kim, P. C. Nandajan, J. Gierschner, S. Y. Park, Adv. Funct. Mater. 2018, 28, 1705141.

[18]

B. Shi, K. Jie, Y. Zhou, J. Zhou, D. Xia, F. Huang, J. Am. Chem. Soc. 2016, 138, 80.

[19]

a) J. J. Li, H. Y. Zhang, G. Liu, X. Dai, L. Chen, Y. Liu, Adv. Optical Mater. 2020, 9, 2001702. b) G. Singh, P. K. Singh, Langmuir 2019, 35, 14628.

[20]

Z. Liu, X. Sun, X. Dai, J. Li, P. Li, Y. Liu, J. Mater. Chem. C 2021, 9, 1958.

[21]

X. Y. Dai, Y. Y. Hu, Y. Sun, M. Huo, X. Dong, Y. Liu, Adv. Sci. 2022, 9, e2200524.

[22]

a) W. C. Geng, J. L. Sessler, D. S. Guo, Chem. Soc. Rev. 2020, 49, 2303.b) Z. Liu, H. Chen, L. Guo, X. Sun, Z.-Y. Zhang, J. Chen, M. Dong, C. Li, Chin. Chem. Lett. 2024, 35, 109666.c) W. Liu, S. Bobbala, C. L. Stern, J. E. Hornick, Y. Liu, A. E. Enciso, E. A. Scott, J. F. Stoddart, J. Am. Chem. Soc. 2020, 142, 3165.

[23]

a) Z. Liu, W. Lin, Y. Liu, Acc. Chem. Res. 2022, 55, 3417.b) W. F. Lai, A. L. Rogach, W. T. Wong, Chem. Soc. Rev. 2017, 46, 6379.c) J. Huang, J. Huang, P. Cheng, Y. Jiang, K. Pu, Adv. Funct. Mater. 2020, 30, 2003628. d) J. Wankar, N. G. Kotla, S. Gera, S. Rasala, A. Pandit, Y. A. Rochev, Adv. Funct. Mater. 2020, 30, 1909049. e) Y. J. Ooi, Y. Wen, J. Zhu, X. Song, J. Li, Biomacromolecules 2020, 21, 1136.f) X. Zhou, R. Ikura, C. Jin, K. Yamaoka, J. Park, Y. Takashima, Aggregate 2024, 5, e457. g) L. Liu, M. Zhu, J. Feng, H. Peng, Y. Shi, J. Gao, L. C. Tang, P. Song, Aggregate 2024, 5, e494. h) Z. Hu, S. Xu, H. Zhang, X. Ji, Aggregate 2022, 4, e283. i) J. Y. Ma, Y. X. Wang, Y. Huang, Y. Zhang, Y. X. Cui, D. M. Kong, Aggregate 2022, 3, e166.

[24]

a) L. Hu, K. Li, W. Shang, X. Zhu, M. Liu, Angew. Chem. Int. Ed. 2020, 59, 4953.b) Z. Liu, M. Tian, H. Zhang, Y. Liu, Chem. Commun. 2023, 59, 896.c) Z. Liu, H. Chen, X. Sun, J. Lu, J. Wu, Y. Shang, Z. Y. Zhang, C. Li, Asian J. Org. Chem. 2024, 13, e202300663. d) Q. Wang, Q. Zhang, Q. W. Zhang, X. Li, C. X. Zhao, T. Y. Xu, D. H. Qu, H. Tian, Nat. Commun. 2020, 11, 158.

[25]

a) Q. W. Zhang, D. Li, X. Li, P. B. White, J. Mecinovic, X. Ma, H. Agren, R. J. M. Nolte, H. Tian, J. Am. Chem. Soc. 2016, 138, 13541.b) M. Tang, Y. H. Liu, H. Liu, Q. Mao, Q. Yu, H. Kitagishi, Y. M. Zhang, L. Xiao, Y. Liu, J. Med. Chem. 2022, 65, 13473.

[26]

a) Z. Liu, Y. Liu, Chem. Soc. Rev. 2022, 51, 4786.b) M. D. Tian, Z. Wang, X. Yuan, H. Zhang, Z. X. Liu, Y. Liu, Adv. Funct. Mater. 2023, 33, 2300779.

[27]

Y. Y. Hu, X. Y. Dai, X. Dong, M. Huo, Y. Liu, Angew. Chem. Int. Ed. 2022, 61, e202213097.

[28]

a) Y. M. Zhang, Y. H. Liu, Y. Liu, Adv. Mater. 2020, 32, 1806158. b) A. Blanco-Gómez, P. Cortón, L. Barravecchia, I. Neira, E. Pazos, C. Peinador, M. D. García, Chem. Soc. Rev. 2020, 49, 3834.

[29]

a) G. Han, D. Kim, Y. Park, J. Bouffard, Y. Kim, Angew. Chem. Int. Ed. 2015, 54, 3912.b) T. I. Kim, H. Jin, J. Bae, Y. Kim, Anal. Chem. 2017, 89, 10565.c) Y. Li, L. Ning, F. Yuan, T. Zhang, J. Zhang, Z. Xu, X. F. Yang, Anal. Chem. 2020, 92, 5733.d) T. I. Kim, Y. Kim, Chem. Commun. 2016, 52, 10648.e) S. Ma, S. Du, G. Pan, S. Dai, B. Xu, W. Tian, Aggregate 2021, 2, e96.

[30]

a) H. Zhu, J. Fan, J. Wang, H. Mu, X. Peng, J. Am. Chem. Soc. 2014, 136, 12820.b) Z. Liu, X. Dai, Q. Xu, X. Sun, Y. Liu, Chin. J. Chem. 2022, 40, 493.

[31]

a) J. Zhang, Y. Yang, L. Zeng, J. Wang, Food Chem. 2024, 436, 137769.b) H. Ye, S. Koo, Z. Beitong, Y. Ke, R. Sheng, T. Duan, L. Zeng, J. S. Kim, Anal. Chem. 2022, 94, 15423.c) Pratibha, A. Kapoor, J. K. Rajput, A. Kumar, Anal. Chem. 2022, 94, 17685.d) Z. Xu, C. Zeng, Y. Zhao, M. Zhou, T. Lv, C. Song, T. Qin, L. Wang, B. Liu, X. Peng, Food Chem. 2023, 410, 135381.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/