Organic cocrystals: From high-performance molecular materials to multi-functional applications

Yuqing Ding , Yan Zhao , Yunqi Liu

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e626

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e626 DOI: 10.1002/agt2.626
REVIEW

Organic cocrystals: From high-performance molecular materials to multi-functional applications

Author information +
History +
PDF

Abstract

Advancements in organic electronics are propelling the development of new material systems, where organic materials stand out for their unique benefits, including tunability and cost-effectiveness. Organic single crystals stand out for their ordered structure and reduced defects, enhancing the understanding of the relationship between structure and performance. Organic cocrystal engineering builds upon these foundations, exploring intermolecular interactions within multicomponent-ordered crystalline materials to combine the inherent advantages of single-component crystals. However, the path to realizing the full potential of organic cocrystals is fraught with challenges, including structural mismatches, unclear cocrystallization mechanisms, and unpredictable property alterations, which complicate the effective cocrystallization between different molecules. To deepen the understanding of this promising area, this review introduces the mechanism of organic cocrystal formation, the various stacking modes, and different growth techniques, and highlights the advancements in cocrystal engineering for multifunctional applications. The goal is to provide comprehensive guidelines for the cocrystal engineering of high-performance molecular materials, thereby expanding the applications of organic cocrystals in the fields of optoelectronics, photothermal energy, and energy storage and conversion.

Keywords

cocrystal / electronics / photonics / photothermal conversion / stimuli-responsive behaviors

Cite this article

Download citation ▾
Yuqing Ding, Yan Zhao, Yunqi Liu. Organic cocrystals: From high-performance molecular materials to multi-functional applications. Aggregate, 2024, 5(6): e626 DOI:10.1002/agt2.626

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Zhu, X. Zhang, W. Hu, Sci. Bull. 2021, 66, 512.

[2]

C. Wang, H. Dong, L. Jiang, W. Hu, Chem. Soc. Rev. 2018, 47, 422.

[3]

C. F. Liu, S. Li, J. Zhang, W. Duan, Y. Zhang, H. Liu, Q. Luo, S. Chen, X. Liu, W. Y. Lai, Adv. Electron. Mater. 2023, 9, 2201107.

[4]

J. Ferraris, D. O. Cowan, V. Walatka, J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948.

[5]

B. Mahns, O. Kataeva, D. Islamov, S. Hampel, F. Steckel, C. Hess, M. Knupfer, B. Büchner, C. Himcinschi, T. Hahn, R. Renger, J. Kortus, Cryst. Growth Des. 2014, 14, 1338.

[6]

A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485.

[7]

P. Yu, Y. Li, H. Zhao, L. Zhu, Y. Wang, W. Xu, Y. Zhen, X. Wang, H. Dong, D. Zhu, W. Hu, Small 2021, 17, 2006574.

[8]

F. Li, L. Zheng, Y. Sun, S. Li, L. Sun, F. Yang, W. Dong, X. Zhang, W. Hu, Sci. Chin. Chem. 2022, 66, 266.

[9]

H. Wang, Q. Li, J. Zhang, H. Zhang, Y. Shu, Z. Zhao, W. Jiang, L. Du, D. L. Phillips, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, R. Lu, B. Z. Tang, J. Am. Chem. Soc. 2021, 143, 9468.

[10]

Y. Zhang, H. Wu, Y. Sun, S. Li, S. Liu, L. Zheng, L. Sun, F. Yang, X. Zhang, W. Hu, Sci. Chin. Mater. 2022, 65, 1320.

[11]

W. Zhu, H. Dong, Y. Zhen, W. Hu, Sci. Chin. Mater. 2015, 58, 854.

[12]

Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, G. Saito, Appl. Phys. Lett. 2006, 88, 073504.

[13]

Y. Matsunaga, Nature 1966, 211, 182.

[14]

M. Dewar, A. Lepley, J. Am. Chem. Soc. 1961, 83.

[15]

R. S. Mulliken, J. Chim. Phys. 1964, 61, 20.

[16]

W. Wang, L. Luo, P. Sheng, J. Zhang, Q. Zhang, Chem. Eur. J. 2021, 27, 464.

[17]

T. J. Kistenmacher, T. J. Emge, A. N. Bloch, D. O. Cowan, Acta Crystallogr. Sect. B 2010, 38, 1193.

[18]

P. Coppens, T. N. G. Row, Ann. N. Y. Acad. Sci. 1978, 313, 244.

[19]

A. A. Dar, S. Rashid, CrystEngComm 2021, 23, 8007.

[20]

P. Hu, K. Du, F. Wei, H. Jiang, C. Kloc, Cryst. Growth Des. 2016, 16, 3019.

[21]

A. Salmerón-Valverde, J. G. Robles-Martínez, J. García-Serrano, R. Gómez, R. M. Ridaura, M. Quintana, A. Zehe, Mol. Eng. 1999, 8, 419.

[22]

R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 2017, 11, 3752.

[23]

Y. Wang, W. Zhu, W. Du, X. Liu, X. Zhang, H. Dong, W. Hu, Angew. Chem. Int. Ed. 2018, 57, 3963.

[24]

Y. Wang, Y. Li, W. Zhu, J. Liu, X. Zhang, R. Li, Y. Zhen, H. Dong, W. Hu, Nanoscale 2016, 8, 14920.

[25]

G. Gao, M. Chen, J. Roberts, M. Feng, C. Xiao, G. Zhang, S. Parkin, C. Risko, L. Zhang, J. Am. Chem. Soc. 2020, 142, 2460.

[26]

S. Li, B. Lu, X. Fang, D. Yan, Angew. Chem. Int. Ed. 2020, 59, 22623.

[27]

M. P. Zhuo, Y. C. Tao, X. D. Wang, Y. Wu, S. Chen, L. S. Liao, L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 11300.

[28]

Y. Sun, Y. Lei, L. Liao, W. Hu, Angew. Chem. Int. Ed. 2017, 56, 10352.

[29]

C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 55254.

[30]

J. Stojaković, A. M. Whitis, L. R. MacGillivray, Angew. Chem. Int. Ed. 2013, 52, 12127.

[31]

S. K. Park, I. Cho, J. Gierschner, J. H. Kim, J. H. Kim, J. E. Kwon, O. K. Kwon, D. R. Whang, J.-H. Park, B.-K. An, S. Y. Park, Angew. Chem. Int. Ed. 2016, 55, 203.

[32]

Y. L. Lei, L. S. Liao, S. T. Lee, J. Am. Chem. Soc. 2013, 135, 3744.

[33]

F. Topić, K. Rissanen, J. Am. Chem. Soc. 2016, 138, 6610.

[34]

G.-J. Zhao, K.-L. Han, Acc. Chem. Res. 2012, 45, 404.

[35]

E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1619.

[36]

A. K. Blackburn, A. C. H. Sue, A. K. Shveyd, D. Cao, A. Tayi, A. Narayanan, B. S. Rolczynski, J. M. Szarko, O. A. Bozdemir, R. Wakabayashi, J. A. Lehrman, B. Kahr, L. X. Chen, M. S. Nassar, S. I. Stupp, J. F. Stoddart, J. Am. Chem. Soc. 2014, 136, 17224.

[37]

Y. Liu, Q. Zeng, B. Zou, Y. Liu, B. Xu, W. Tian, Angew. Chem. Int. Ed. 2018, 57, 15670.

[38]

M. Nishio, CrystEngComm 2004, 6, 130.

[39]

G. Portalone, K. Rissanen, Cryst. Growth Des. 2018, 18, 5904.

[40]

A. Narayanan, D. Cao, L. Frazer, A. S. Tayi, A. K. Blackburn, A. C. Sue, J. B. Ketterson, J. F. Stoddart, S. I. Stupp, J. Am. Chem. Soc. 2017, 139, 9186.

[41]

S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163.

[42]

F. Zordan, L. Brammer, P. Sherwood, J. Am. Chem. Soc. 2005, 127, 5979.

[43]

S. L. Price, A. J. Stone, J. Lucas, R. S. Rowland, A. E. Thornley, J. Am. Chem. Soc. 1994, 116, 4910.

[44]

S. Chen, H. Yin, J. J. Wu, H. Lin, X. D. Wang, Sci. Chin. Mater. 2020, 63, 1613.

[45]

K. E. Riley, J. S. Murray, J. Fanfrlík, J. Řezáč, R. J. Solá, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2011, 17, 3309.

[46]

A. Mukherjee, S. Tothadi, G. R. Desiraju, Acc. Chem. Res. 2014, 47, 2514.

[47]

L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, Chem. Rev. 2015, 115, 7118.

[48]

X. Deng, X. Yu, J. Xiao, Q. Zhang, Aggregate 2021, 2, e35.

[49]

Y. Huang, J. Xing, Q. Gong, L.-C. Chen, G. Liu, C. Yao, Z. Wang, H.-L. Zhang, Z. Chen, Q. Zhang, Nat. Commun. 2019, 10, 169.

[50]

H. Ye, G. Liu, S. Liu, D. Casanova, X. Ye, X. Tao, Q. Zhang, Q. Xiong, Angew. Chem. Int. Ed. 2018, 57, 1928.

[51]

Y. Huang, Q. Gong, J. Ge, P. Tang, F. Yu, L. Xiao, Z. Wang, H. Sun, J. Yu, D.-S. Li, Q. Xiong, Q. Zhang, ACS Nano 2020, 14, 15962.

[52]

D. Vermeulen, L. Y. Zhu, K. P. Goetz, P. Hu, H. Jiang, C. S. Day, O. D. Jurchescu, V. Coropceanu, C. Kloc, L. E. McNeil, J. Phys. Chem. C 2014, 118, 24688.

[53]

P. Hu, S. Wang, A. Chaturvedi, F. Wei, X. Zhu, X. Zhang, R. Li, Y. Li, H. Jiang, Y. Long, C. Kloc, Cryst. Growth Des. 2018, 18, 1776.

[54]

J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. A. Di, W. Hu, Z. Shuai, K. Singh, D. Zhu, J. Am. Chem. Soc. 2013, 135, 558.

[55]

J. Zhang, W. Xu, P. Sheng, G. Zhao, D. Zhu, Acc. Chem. Res. 2017, 50, 1654.

[56]

R. J. A Bigsby, D. D. Auger, Z. Jin, D. Dowson, C. Hardaker, J. Fisher, R. A. Laudise, C. Kloc, P. G. Simpkins, T. Siegrist, J. Cryst. Growth 1998, 187.

[57]

X. Fang, X. Yang, D. Yan, J. Mater. Chem. C 2017, 5, 1632.

[58]

C. Park, J. E. Park, H. C. Choi, Acc. Chem. Res. 2014, 47, 2353.

[59]

C. Kloc, R. A. Laudise, J. Cryst. Growth 1998, 193, 563.

[60]

X. Ye, Y. Liu, Q. Guo, Q. Han, C. Ge, S. Cui, L. Zhang, X. Tao, Nat. Commun. 2019, 10, 761.

[61]

X. Ye, Y. Liu, Q. Han, C. Ge, S. Cui, L. Zhang, X. Zheng, G. Liu, J. Liu, D. Liu, X. Tao, Chem. Mater. 2018, 30, 412.

[62]

J. A. Lim, F. Liu, S. Ferdous, M. Muthukumar, A. L. Briseno, Mater. Today 2010, 13, 14.

[63]

T. Wakahara, M. Sathish, K. Miyazawa, C. Hu, Y. Tateyama, Y. Nemoto, T. Sasaki, O. Ito, J. Am. Chem. Soc. 2009, 131, 9940.

[64]

L. Jiang, H. Dong, Q. Meng, H. Li, M. He, Z. Wei, Y. He, W. Hu, Adv. Mater. 2011, 23, 2059.

[65]

J. Zhang, H. Geng, T. S. Virk, Y. Zhao, J. Tan, C.-a. Di, W. Xu, K. Singh, W. Hu, Z. Shuai, Y. Liu, D. Zhu, Adv. Mater. 2012, 24, 2603.

[66]

L. Sun, Y. Wang, F. Yang, X. Zhang, W. Hu, Adv. Mater. 2019, 31, 1902328.

[67]

T. Wakahara, P. D’Angelo, K. Miyazawa, Y. Nemoto, O. Ito, N. Tanigaki, D. D. C. Bradley, T. D. Anthopoulos, J. Am. Chem. Soc. 2012, 134, 7204.

[68]

Y. Qin, C. Cheng, H. Geng, C. Wang, W. Hu, W. Xu, Z. Shuai, D. Zhu, Phys. Chem. Chem. Phys. 2016, 18, 14094.

[69]

Y. L. Lei, Y. Jin, D. Y. Zhou, W. Gu, X. B. Shi, L. S. Liao, S. T. Lee, Adv. Mater. 2012, 24, 5345.

[70]

K. Jalani, M. Kumar, S. George, Chem. Commun. 2013, 49, 5174.

[71]

Y. Yoshida, Y. Nakamura, H. Kishida, H. Hayama, Y. Nakano, H. Yamochi, G. Saito, CrystEngComm 2017, 19, 3626.

[72]

D. V. Konarev, R. N. Lyubovskaya, N. Y. V. Drichko, E. I. Yudanova, Y. M. Shul‘ga, A. L. Litvinov, V. N. Semkin, B. P. Tarasov, J. Mater. Chem. 2000, 10, 803.

[73]

S. K. Park, S. Varghese, J. H. Kim, S.-J. Yoon, O. K. Kwon, B.-K. An, J. Gierschner, S. Y. Park, J. Am. Chem. Soc. 2013, 135, 4757.

[74]

Y. Wang, H. Wu, W. Zhu, X. Zhang, Z. Liu, Y. Wu, C. Feng, Y. Dang, H. Dong, H. Fu, W. Hu, Angew. Chem. Int. Ed. 2021, 60, 6344.

[75]

N. Qiao, M. Li, W. Schlindwein, N. Malek, A. Davies, G. Trappitt, Int. J. Pharm. 2011, 419, 1.

[76]

R. Thakuria, A. Delori, W. Jones, M. P. Lipert, L. Roy, N. Rodríguez-Hornedo, Int. J. Pharm. 2013, 453, 101.

[77]

G. Kaupp, CrystEngComm 2003, 5, 117.

[78]

T. Friščić, W. Jones, Cryst. Growth Des. 2009, 9, 1621.

[79]

D. Braga, L. Maini, F. Grepioni, Chem. Soc. Rev. 2013, 42, 7638.

[80]

S. Duan, X. Gao, Y. Wang, F. Yang, M. Chen, X. Zhang, X. Ren, W. Hu, Adv. Mater. 2019, 31, 1807975.

[81]

X. Che, Y. Li, Y. Qu, S. R. Forrest, Nat. Energy 2018, 3, 422.

[82]

M. Hiraoka, T. Hasegawa, T. Yamada, Y. Takahashi, S. Horiuchi, Y. Tokura, Adv. Mater. 2007, 19, 3248.

[83]

J. Park, S. H. Joo, Y.-J. Kim, J. H. Park, S. K. Kwak, S. Ahn, S. J. Kang, Adv. Funct. Mater. 2019, 29, 1902888.

[84]

Z. Zheng, Z. Ju, S. Ma, Z. Liu, W. Xiang, J. Chen, B. Yang, Z. Mu, J. Zhang, P. Li, P. Sheng, New J. Chem. 2023, 47, 7476.

[85]

A. Mandal, P. Swain, B. Nath, S. Sau, P. Mal, CrystEngComm 2019, 21, 981.

[86]

A. Mandal, K. Rissanen, P. Mal, CrystEngComm 2019, 21, 4401.

[87]

K. Yonemitsu, J. Phys. Soc. Jpn. 2005, 74, 2544.

[88]

W. Zhu, Y. Yi, Y. Zhen, W. Hu, Small 2015, 11, 2150.

[89]

Y. Qin, J. Zhang, X. Zheng, H. Geng, G. Zhao, W. Xu, W. Hu, Z. Shuai, D. Zhu, Adv. Mater. 2014, 26, 4093.

[90]

S. Li, L. Zheng, Y. Chan, B. Li, Y. Sun, L. Sun, C. Zhen, X. Zhang, W. Hu, J. Mater. Chem. C 2022, 10, 9596.

[91]

Y. Huang, Z. Wang, Z. Chen, Q. Zhang, Angew. Chem. Int. Ed. 2019, 58, 9696.

[92]

D. A. Kunkel, J. Hooper, B. Bradley, L. Schlueter, T. Rasmussen, P. Costa, S. Beniwal, S. Ducharme, E. Zurek, A. Enders, J. Phys. Chem. Lett. 2016, 7, 435.

[93]

Y. Wang, W. Zhu, H. Dong, X. Zhang, R. Li, W. Hu, Top. Curr. Chem. 2016, 374, 83.

[94]

J. B. Torrance, A. Girlando, J. J. Mayerle, J. I. Crowley, V. Y. Lee, P. Batail, S. J. LaPlaca, Phys. Rev. Lett. 1981, 47, 1747.

[95]

J. Harada, M. Ohtani, Y. Takahashi, T. Inabe, J. Am. Chem. Soc. 2015, 137, 4477.

[96]

S. y. L. Chun Zhen, Y. h. Zhang, F. Li, M. j. Jiang, X. T. Zhang, W. p. Hu, Acta Polym. Sin. 2022, 53, 396.

[97]

H. Zhang, L. Jiang, Y. Zhen, J. Zhang, G. Han, X. Zhang, X. Fu, Y. Yi, W. Xu, H. Dong, W. Chen, W. Hu, D. Zhu, Adv. Electron. Mater. 2016, 2, 1500423.

[98]

S. M. Hubig, J. K. Kochi, J. Phys. Chem. 1995, 99, 17578.

[99]

L. Wang, J. Deng, M. Jiang, C. Zhen, F. Li, S. Li, S. Bai, X. Zhang, W. Zhu, J. Mater. Chem. A 2023, 11, 11235.

[100]

K. Liu, L. Wang, S. Li, H. Liu, D. Zhang, M. Jiang, W. Chen, F. Jiao, X. Zhang, W. Hu, Adv. Funct. Mater. 2023, 33, 2306871.

[101]

Y. D. Zhao, J. Han, Y. Chen, Y. Su, Y. M. Cao, B. Wu, S. M. Yu, M. D. Li, Z. Wang, M. Zheng, M. P. Zhuo, L. S. Liao, ACS Nano 2022, 16, 15000.

[102]

J. Li, J. Wang, J. Zhang, T. Han, X. Hu, M. M. S. Lee, D. Wang, B. Z. Tang, Adv. Mater. 2021, 33, 2105999.

[103]

Q. Huang, X. Ye, W. Chen, X. Song, Y. T. Chen, X. Wen, M. Zhang, Y. Wang, S. L. Chen, L. Dang, M. D. Li, ACS Energy Lett. 2023, 8, 4179.

[104]

S. Tian, Z. Huang, J. Tan, X. Cui, Y. Xiao, Y. Wan, X. Li, Q. Zhao, S. Li, C. S. Lee, ACS Energy Lett. 2020, 5, 2698.

[105]

Q. Wu, R. Xia, H. Wen, T. Sun, Z. Xie, J. Colloid Interface Sci. 2022, 627, 554.

[106]

L. Zeng, L. Huang, Z. Wang, J. Wei, K. Huang, W. Lin, C. Duan, G. Han, Angew. Chem. Int. Ed. 2021, 60, 23569.

[107]

W. Chen, L. Dang, Z. Situ, S. Ni, Y. Chen, S. Zhu, H. Li, S. L. Chen, D. L. Phillips, M. D. Li, J. Phys. Chem. Lett. 2022, 13, 6571.

[108]

X. Y. Xia, Q. Lv, Y. Yu, Z.-L. Che, X. D. Wang, L. S. Liao, S. T. Lee, Sci. China Mater. 2024, 67, 946.

[109]

G. Zhao, H. Dong, Q. Liao, J. Jiang, Y. Luo, H. Fu, W. Hu, Nat. Commun. 2018, 9, 4790.

[110]

X. Yang, L. Lan, L. Li, J. Yu, X. Liu, Y. Tao, Q.-H. Yang, P. Naumov, H. Zhang, Nat. Commun. 2023, 14, 3627.

[111]

Y. Liu, H. Hu, L. Xu, B. Qiu, J. Liang, F. Ding, K. Wang, M. Chu, W. Zhang, M. Ma, B. Chen, X. Yang, Y. S. Zhao, Angew. Chem. Int. Ed. 2020, 59, 4456.

[112]

W. Zhu, L. Zhu, Y. Zou, Y. Wu, Y. Zhen, H. Dong, H. Fu, Z. Wei, Q. Shi, W. Hu, Adv. Mater. 2016, 28, 5954.

[113]

M. P. Zhuo, Y. Yuan, Y. Su, S. Chen, Y. T. Chen, Z. Q. Feng, Y. K. Qu, M. D. Li, Y. Li, B. W. Hu, X. D. Wang, L. S. Liao, Adv. Mater. 2022, 34, 2107169.

[114]

S. K. Park, J. H. Kim, T. Ohto, R. Yamada, A. O. F. Jones, D. R. Whang, I. Cho, S. Oh, S. H. Hong, J. E. Kwon, J. H. Kim, Y. Olivier, R. Fischer, R. Resel, J. Gierschner, H. Tada, S. Y. Park, Adv. Mater. 2017, 29, 1701346.

[115]

Y. Yan, C. Liu, J. Fan, Y. Li, J. Li, X. Li, W.-Y. Lai, Adv. Opt. Mater. 2024, 12, 2302935.

[116]

W. Zhu, R. Zheng, X. Fu, H. Fu, Q. Shi, Y. Zhen, H. Dong, W. Hu, Angew. Chem. Int. Ed. 2015, 54, 6785.

[117]

P. Wu, L. Zhou, Z. Zhen, S. Xia, L. Yu, J. Photochem. Photobiol. A 2022, 426, 113727.

[118]

W. Xiang, H. Sun, J. Zhang, S. Wang, C. Pan, L. Yao, S. Ma, W. Li, W. Dan, J. Zhang, Adv. Opt. Mater. 2024, 12, 2302462.

[119]

H. Zhang, D.-Q. Lin, M.-Z. Wu, D. Jin, L. Huang, L.-H. Xie, Cryst. Growth Des. 2023, 23, 6548.

[120]

R. Gao, Y. Cha, H. M. Ahmad, H. Fu, Z. Yu, Adv. Opt. Mater. 2023, 11, 2301112.

[121]

W. Xu, G. Huang, Z. Yang, Z. Deng, C. Zhou, J.-A. Li, M.-D. Li, T. Hu, B. Z. Tang, D. L. Phillips, Nat. Commun. 2024, 15, 2561.

[122]

Y. Wang, H. Wu, P. Li, S. Chen, L. O. Jones, M. A. Mosquera, L. Zhang, K. Cai, H. Chen, X.-Y. Chen, C. L. Stern, M. R. Wasielewski, M. A. Ratner, G. C. Schatz, J. F. Stoddart, Nat. Commun. 2020, 11, 4633.

[123]

L. Sun, W. Hua, Y. Liu, G. Tian, M. Chen, M. Chen, F. Yang, S. Wang, X. Zhang, Y. Luo, W. Hu, Angew. Chem. Int. Ed. 2019, 58, 11311.

[124]

A. Abe, K. Goushi, M. Mamada, C. Adachi, Adv. Mater. 2023, 36, 2211160.

[125]

L. Sun, W. Zhu, W. Wang, F. Yang, C. Zhang, S. Wang, X. Zhang, R. Li, H. Dong, W. Hu, Angew. Chem. Int. Ed. 2017, 56, 7831.

[126]

J. Wang, A. Li, S. Xu, B. Li, C. Song, Y. Geng, N. Chu, J. He, W. Xu, J. Mater. Chem. C 2018, 6, 8958.

[127]

Y. Liu, A. Li, S. Xu, W. Xu, Y. Liu, W. Tian, B. Xu, Angew. Chem. Int. Ed. 2020, 59, 15098.

[128]

B. Li, L. Cui, C. Li, Angew. Chem. Int. Ed. 2020, 59, 22012.

[129]

G. Liu, J. Liu, X. Ye, L. Nie, P. Gu, X. Tao, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 198.

[130]

H. Wang, Q. Li, J. Zhang, H. Zhang, Y. Shu, Z. Zhao, W. Jiang, L. Du, D. L. Phillips, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, R. Lu, B. Z. Tang, J. Am. Chem. Soc. 2021, 143, 9468.

[131]

C. Zhang, X. Wang, Y. Li, Y. Sun, Q. Zhang, Chem. Eur. J. 2023, 29, e202300481.

[132]

Y. Yang, G. Liu, J. Liu, M. Wei, Z. Wang, X. Hao, D. V. Maheswar Repaka, R. V. Ramanujan, X. Tao, W. Qin, Q. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 44654.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/