Microtubule polymerization induced by iridium-fullerene photosensitizers for cancer immunotherapy via dual-reactive oxygen species regulation strategy

Xiao-Xiao Chen , Kun Peng , Xi Chen , Zheng-Yin Pan , Qing-Hua Shen , Yu-Yi Ling , Jian-Zhang Zhao , Cai-Ping Tan

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e623

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e623 DOI: 10.1002/agt2.623
RESEARCH ARTICLE

Microtubule polymerization induced by iridium-fullerene photosensitizers for cancer immunotherapy via dual-reactive oxygen species regulation strategy

Author information +
History +
PDF

Abstract

Microtubules (MTs) are key players in cell division, migration, and signaling, and they are regarded as important targets for cancer treatment. In this work, two fullerene (C60)-functionalized Ir(III) complexes (Ir-C601 and Ir-C602) are rationally designed as dual reactive oxygen species (ROS) regulators and MT-targeted Type I/II photosensitizers. In the dark, Ir-C601 and Ir-C602 serve as ROS scavengers to eliminate O2 and •OH, consequently reducing the dark cytotoxicity and reversing dysfunctional T cells. Due to the efficiently populated C60-localized intraligand triplet state, Ir-C601 and Ir-C602 can be excited by green light (525 nm) to produce O2 and •OONO (Type I) and 1O2 (Type II) to overcome tumor hypoxia. Moreover, Ir-C601 is also able to photooxidize tubulin, consequently interfering with the cellular cytoskeleton structures, inducing immunogenic cell death and inhibiting cell proliferation and migration. Finally, Ir-C601 exhibits promising photo-immunotherapeutic effects both in vitro and in vivo. In all, we report here the first MT stabilizing photosensitizer performing through Type I/II photodynamic therapy pathways, which provides insights into the rational design of new photo-immunotherapeutic agents targeting specific biomolecules.

Keywords

anticancer / fullerene / iridium complexes / microtubule / photo-immunotherapy

Cite this article

Download citation ▾
Xiao-Xiao Chen, Kun Peng, Xi Chen, Zheng-Yin Pan, Qing-Hua Shen, Yu-Yi Ling, Jian-Zhang Zhao, Cai-Ping Tan. Microtubule polymerization induced by iridium-fullerene photosensitizers for cancer immunotherapy via dual-reactive oxygen species regulation strategy. Aggregate, 2024, 5(6): e623 DOI:10.1002/agt2.623

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Dumontet, M. A. Jordan, Nat. Rev. Drug Discov. 2010, 9, 790.

[2]

R. A. Stanton, K. M. Gernert, J. H. Nettles, R. Aneja, Med. Res. Rev. 2011, 31, 443.

[3]

E. Mukhtar, V. M. Adhami, H. Mukhtar, Mol. Cancer Ther. 2014, 13, 275.

[4]

M. A. Jordan, L. Wilson, Nat. Rev. Cancer 2004, 4, 253.

[5]

H. Kostrhunova, J. Zajac, V. Novohradsky, J. Kasparkova, J. Malina, J. R Aldrich-Wright, E. Petruzzella, R. Sirota, D. Gibson, V. Brabec, J. Med. Chem. 2019, 62, 5176.

[6]

N. Alatrash, F. H. Issa, N. S. Bawazir, S. J. West, K. E. Van Manen-Brush, C. P. Shelor, A. S. Dayoub, K. A. Myers, C. Janetopoulos, E. A. Lewis, F. M. MacDonnell, Chem. Sci. 2019, 11, 264.

[7]

T. A. Ratnikova, P. N. Govindan, E. Salonen, P. C. Ke, ACS Nano 2011, 5, 6306.

[8]

X. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185.

[9]

J. S. Nam, M. G. Kang, J. Kang, S. Y. Park, S. J. C. Lee, H. T. Kim, J. K. Seo, O. H. Kwon, M. H. Lim, H. W. Rhee, T. H. Kwon, J. Am. Chem. Soc. 2016, 138, 10968.

[10]

T. C. Pham, V. N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 2021, 121, 13454.

[11]

L. K. McKenzie, H. E. Bryant, J. A. Weinstein, Coord. Chem. Rev. 2019, 379, 22.

[12]

H. Huang, S. Banerjee, K. Qiu, P. Zhang, O. Blacque, T. Malcomson, M. J. Paterson, G. J. Clarkson, M. Staniforth, V. G. Stavros, G. Gasser, H. Chao, P. J. Sadler, Nat. Chem. 2019, 11, 1041.

[13]

Y. Jiang, K. Shao, F. Zhang, T. Wang, L. Han, X. Kong, J. Shi, Aggregate 2023, 4, e321.

[14]

Y. Y. Zhao, X. Zhang, Z. Chen, Y. Xu, H. Kim, H. Jeong, Y. R. Lee, J. Lee, X. Li, J. Yoon, Aggregate 2024, e514. https://doi.org/10.1002/agt2.514

[15]

L. Gourdon, K. Cariou, G. Gasser, Chem. Soc. Rev. 2022, 51, 1167.

[16]

M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long, X. Z. Song, J. W. Foley, X. J. Peng, J. Am. Chem. Soc. 2018, 140, 14851.

[17]

Y. L. Wan, L. H. Fu, C. Y. Li, J. Lin, P. Huang, Adv. Mater. 2021, 33, 2103978.

[18]

D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380.

[19]

Q. C. Yao, J. L. Fan, S. R. Long, X. Z. Zhao, H. D. Li, J. J. Du, K. Shao, X. J. Peng, Chem 2022, 8, 197.

[20]

S. Monro, K. L. Colon, H. Yin, J. Roque III, P. Konda, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron, S. A. McFarland, Chem. Rev. 2019, 119, 797.

[21]

P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregate 2023, 4, e352.

[22]

C. N. Ko, G. D. Li, C. H. Leung, D. L. Ma, Coord. Chem. Rev. 2019, 381, 79.

[23]

J. J. Li, T. F. Chen, Coord. Chem. Rev. 2020, 418, 213355.

[24]

K. Peng, B.-B. Liang, W. Liu, Z.-W. Mao, Coord. Chem. Rev. 2021, 449, 214210.

[25]

S. A. McFarland, A. Mandel, R. Dumoulin-White, G. Gasser, Curr. Opin. Chem. Biol. 2020, 56, 23.

[26]

B. Englinger, C. Pirker, P. Heffeter, A. Terenzi, C. R. Kowol, B. K. Keppler, W. Berger, Chem. Rev. 2019, 119, 1519.

[27]

L. Zhang, N. Montesdeoca, J. Karges, H. Xiao, Angew. Chem. Int. Ed. 2023, 62, e202300662.

[28]

Z. Y. Li, Q. H. Shen, Z. W. Mao, C. P. Tan, Chem. Asian J. 2022, 17, e202200270.

[29]

X. L. Xiong, K. B. Huang, Y. Wang, B. Cao, Y. L. Luo, H. W. Chen, Y. Yang, Y. Long, M. Y. Liu, A. S. C. Chan, H. Liang, T. T. Zou, J. Am. Chem. Soc. 2022, 144, 10407.

[30]

L. L. Wang, R. L. Guan, L. N. Xie, X. X. Liao, K. Xiong, T. W. Rees, Y. Chen, L. N. Ji, H. Chao, Angew. Chem. Int. Ed. 2021, 60, 4657.

[31]

Y. Y. Ling, W. J. Wang, L. Hao, X. W. Wu, J. H. Liang, H. Zhang, Z. W. Mao, C. P. Tan, Small 2022, 18, e2203659.

[32]

Y. Y. Ling, X. Y. Xia, L. Hao, W. J. Wang, H. Zhang, L. Y. Liu, W. Liu, Z. Y. Li, C. P. Tan, Z. W. Mao, Angew. Chem. Int. Ed. 2022, 61, e202210988.

[33]

J. Nam, S. Son, K. S. Park, W. P. Zou, L. D. Shea, J. J. Moon, Nat. Rev. Mater. 2019, 4, 398.

[34]

W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354.

[35]

Z. Markovic, V. Trajkovic, Biomaterials 2008, 29, 3561.

[36]

J. Tong, M. C. Zimmerman, S. M. Li, X. Yi, R. Luxenhofer, R. Jordan, A. V. Kabanov, Biomaterials 2011, 32, 3654.

[37]

B. C. Dickinson, C. J. Chang, Nat. Chem. Biol. 2011, 7, 504.

[38]

X. Chen, M. Song, B. Zhang, Y. Zhang, Oxid. Med. Cell Longev. 2016, 2016, 1580967.

[39]

B. Yang, Y. Chen, J. Shi, Chem. Rev. 2019, 119, 4881.

[40]

Michele Maggini, Gianfranco Scorrano, J. Am. Chem. Soc. 1993, 115, 9798.

[41]

F. Sguerra, R. Marion, G. H. V. Bertrand, R. Coulon, É. Sauvageot, R. Daniellou, J. L. Renaud, S. Gaillard, M. Hamel, J. Mater. Chem. C 2014, 2, 6125.

[42]

J. Lee, M. Cho, J. D. Fortner, J. B. Hughes, A. J.-H. Kim, Environ. Sci. Technol. 2009, 43, 4878.

[43]

M. B. Ballatore, M. B. Spesia, M. E. Milanesio, E. N. Durantini, Eur. J. Med. Chem. 2014, 83, 685.

[44]

I. C. Wang, L. A. Tai, D. D. Lee, P. P. Kanakamma, C. K. Shen, T. Y. Luh, C. H. Cheng, K. C. Hwang, J. Med. Chem. 1999, 42, 4614.

[45]

K. P. Zanoni, B. K. Kariyazaki, A. Ito, M. K. Brennaman, T. J. Meyer, N. Y. Murakami Iha, Inorg. Chem. 2014, 53, 4089.

[46]

C. C. Hofmann, S. M. Lindner, M. Ruppert, A. Hirsch, S. A. Haque, M. Thelakkat, J. Kohler, J. Phys. Chem. B 2010, 114, 9148.

[47]

M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233-234, 351.

[48]

A. P. Castano, T. N. Demidova, M. R. Hamblin, Photodiagn. Photodyn. 2004, 1, 279.

[49]

C. Lee, J. S. Nam, C. G. Lee, M. Park, C. M. Yoo, H. W. Rhee, J. K. Seo, T. H. Kwon, Nat. Commun. 2021, 12, 26.

[50]

J. Y. Ong, J. Z. Torres, Mol. Cell 2020, 80, 9.

[51]

J. H. Yang, Y. X. Wang, T. J. Wang, J. Jiang, C. H. Botting, H. T. Liu, Q. Chen, J. L. Yang, J. H. Naismith, X. F. Zhu, L. J. Chen, Nat. Commun. 2016, 7, 12103.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/