A self-assembled nanomedicine for glucose supply interruption-amplified low-temperature photothermal therapy and anti-prometastatic inflammatory processes of triple-negative breast cancer

Mingcheng Wang , Huixi Yi , Zhixiong Zhan , Zitong Feng , Gang-Gang Yang , Yue Zheng , Dong-Yang Zhang

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e622

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e622 DOI: 10.1002/agt2.622
RESEARCH ARTICLE

A self-assembled nanomedicine for glucose supply interruption-amplified low-temperature photothermal therapy and anti-prometastatic inflammatory processes of triple-negative breast cancer

Author information +
History +
PDF

Abstract

The poor prognosis of triple-negative breast cancer (TNBC) results from its high metastasis, whereas inflammation accompanied by excessive reactive oxygen species (ROS) is prone to aggravate tumor metastasis. Although photothermal therapy (PTT) has extremely high therapeutic efficiency, the crafty tumor cells allow an increase in the expression of heat shock proteins (HSPs) to limit its effect, and PTT-induced inflammation is also thought to be a potential trigger for tumor metastasis. Herein, myricetin, iron ions, and polyvinylpyrrolidone were utilized to develop nanomedicines by self-assembly strategy for the treatment of metastatic TNBC. The nanomedicines with marvelous water solubility and dispersion can inhibit glucose transporter 1 and interfere with mitochondrial function to block the energy supply of tumor cells, achieving starvation therapy on TNBC cells. Nanomedicines with excellent photothermal conversion properties allow down-regulating the expression of HSPs to enhance the effect of PTT. Interestingly, the broad spectrum of ROS scavenging ability of nanomedicines successfully attenuates PTT-induced inflammation as well as influences hypoxia-inducible factors-1α/3-phosphoinositide-dependent protein kinase 1 related pathway through glycometabolism inhibition to reduce tumor cell metastasis. Moreover, the nanomedicines have negligible side effects and good clinical application prospects, which provides a valuable paradigm for the treatment of metastatic TNBC through glycometabolism interference, anti-inflammation, starvation, and photothermal synergistic therapy.

Keywords

self-assembled / glucose transporter / glycometabolism / photothermal therapy / starvation therapy / metastasis

Cite this article

Download citation ▾
Mingcheng Wang, Huixi Yi, Zhixiong Zhan, Zitong Feng, Gang-Gang Yang, Yue Zheng, Dong-Yang Zhang. A self-assembled nanomedicine for glucose supply interruption-amplified low-temperature photothermal therapy and anti-prometastatic inflammatory processes of triple-negative breast cancer. Aggregate, 2024, 5(6): e622 DOI:10.1002/agt2.622

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA Cancer J. Clin. 2021, 71, 209.

[2]

L. Yang, Q. Liu, X. Zhang, X. Liu, B. Zhou, J. Chen, D. Huang, J. Li, H. Li, F. Chen, J. Liu, Y. Xing, X. Chen, S. Su, E. Song, Nature 2020, 583, 133.

[3]

H. W. Jackson, J. R. Fischer, V. R. T. Zanotelli, H. R. Ali, R. Mechera, S. D. Soysal, H. Moch, S. Muenst, Z. Varga, W. P. Weber, B. Bodenmiller, Nature 2020, 578, 615.

[4]

C. D. Roskelley, D. E. Williams, L. M. McHardy, K. G. Leong, A. Troussard, A. Karsan, R. J. Andersen, S. Dedhar, M. Roberge, Cancer Res. 2001, 61, 6788.

[5]

L. Claesson-Welsh, M. Welsh, J. Intern. Med. 2013, 273, 114.

[6]

D. C. Radisky, D. D. Levy, L. E. Littlepage, H. Liu, C. M. Nelson, J. E. Fata, D. Leake, E. L. Godden, D. G. Albertson, M. Angela Nieto, Z. Werb, M. J. Bissell, Nature 2005, 436, 123.

[7]

S. Rottenberg, C. Disler, P. Perego, Nat. Rev. Cancer 2021, 21, 37.

[8]

K. Cheng, M. Sano, C. H. Jenkins, G. Zhang, D. Vernekohl, W. Zhao, C. Wei, Y. Zhang, Z. Zhang, Y. Liu, Z. Cheng, L. Xing, ACS Nano 2018, 12, 4946.

[9]

J. J. Miller, F. Loebel, T. A. Juratli, S. S. Tummala, E. A. Williams, T. T. Batchelor, I. Arrillaga-Romany, D. P. Cahill, Neuro-Oncology 2019, 21, 669

[10]

R. Dent, M. Trudeau, K. I. Pritchard, W. M. Hanna, H. K. Kahn, C. A. Sawka, L. A. Lickley, E. Rawlinson, P. Sun, S. A. Narod, Clin. Cancer Res. 2007, 13, 4429.

[11]

F. Balkwill, A. Mantovani, Lancet 2001, 357, 539.

[12]

F. R. Greten, S. I. Grivennikov, Immunity 2019, 51, 27.

[13]

S. I. Grivennikov, F. R. Greten, M. Karin, Cell 2010, 140, 883.

[14]

H. Matsumoto, S.-l. Koo, R. Dent, P. H. Tan, J. Iqbal, J. Clin. Pathol. 2015, 68, 506.

[15]

M. Certo, C.-H. Tsai, V. Pucino, P.-C. Ho, C. Mauro, Nat. Rev. Immunol. 2021, 21, 151.

[16]

E. M. Grasset, M. Dunworth, G. Sharma, M. Loth, J. Tandurella, A. Cimino-Mathews, M. Gentz, S. Bracht, M. Haynes, E. J. Fertig, A. J. Ewald, Sci. Transl. Med. 2022, 14, eabn7571.

[17]

R. Y. Ebright, S. Lee, B. S. Wittner, K. L. Niederhoffer, B. T. Nicholson, A. Bardia, S. Truesdell, D. F. Wiley, B. Wesley, S. Li, A. Mai, N. Aceto, N. Vincent-Jordan, A. Szabolcs, B. Chirn, J. Kreuzer, V. Comaills, M. Kalinich, W. Haas, D. T. Ting, M. Toner, S. Vasudevan, D. A. Haber, S. Maheswaran, D. S. Micalizzi, Science 2020, 367, 1468.

[18]

C. A. Silagy, J. J. McNeil, G. A. Donnan, A. M. Tonkin, B. Worsam, K. Campion, Clin. Pharmacol. Ther. 1993, 54, 84.

[19]

D. Grennan, S. Wang, JAMA 2019, 322, 282.

[20]

M. Wang, Y. Liang, F. Liao, M. R. Younis, Y. Zheng, X. Zhao, X. Yu, W. Guo, D.-Y. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 56471.

[21]

D. Y. Zhang, T. Tu, M. R. Younis, K. S. Zhu, H. Liu, S. Lei, J. Qu, J. Lin, P. Huang, Theranostics 2021, 11, 9904.

[22]

L. Wang, B. Zhu, Y. Deng, T. Li, Q. Tian, Z. Yuan, L. Ma, C. Cheng, Q. Guo, L. Qiu, Adv. Funct. Mater. 2021, 31, 2101804.

[23]

M. D. Wellenstein, S. B. Coffelt, D. E. M. Duits, M. H. van Miltenburg, M. Slagter, I. de Rink, L. Henneman, S. M. Kas, S. Prekovic, C.-S. Hau, K. Vrijland, A. P. Drenth, R. de Korte-Grimmerink, E. Schut, I. van der Heijden, W. Zwart, L. F. A. Wessels, T. N. Schumacher, J. Jonkers, K. E. de Visser, Nature 2019, 572, 538.

[24]

A. M. Cameron, A. Castoldi, D. E. Sanin, L. J. Flachsmann, C. S. Field, D. J. Puleston, R. L. Kyle, A. E. Patterson, F. Hässler, J. M. Buescher, B. Kelly, E. L. Pearce, E. J. Pearce, Nat. Immunol. 2019, 20, 420.

[25]

T. Brabletz, R. Kalluri, M. A. Nieto, R. A. Weinberg, Nat. Rev. Cancer 2018, 18, 128.

[26]

L. Xie, J. Li, G. Wang, W. Sang, M. Xu, W. Li, J. Yan, B. Li, Z. Zhang, Q. Zhao, Z. Yuan, Q. Fan, Y. Dai, J. Am. Chem. Soc. 2022, 144, 787.

[27]

X. Qi, Y. Huang, S. You, Y. Xiang, E. Cai, R. Mao, W. Pan, X. Tong, W. Dong, F. Ye, J. Shen, Adv. Sci. 2022, 9, 2106015.

[28]

D.-Y. Zhang, Y. Zheng, H. Zhang, J.-H. Sun, C.-P. Tan, L. He, W. Zhang, L.-N. Ji, Z.-W. Mao, Adv. Sci. 2018, 5, 1800581.

[29]

M. Chang, Z. Hou, M. Wang, D. Wen, C. Li, Y. Liu, Y. Zhao, J. Lin, Angew. Chem. Int. Ed. 2022, 61, e202209245.

[30]

G. Gao, Y.-W. Jiang, Y. Guo, H.-R. Jia, X. Cheng, Y. Deng, X.-W. Yu, Y.-X. Zhu, H.-Y. Guo, W. Sun, X. Liu, J. Zhao, S. Yang, Z.-W. Yu, F. M. S. Raya, G. Liang, F.-G. Wu, Adv. Funct. Mater. 2020, 30, 1909391.

[31]

G.-G. Yang, D.-J. Zhou, Z.-Y. Pan, J. Yang, D.-Y. Zhang, Q. Cao, L.-N. Ji, Z.-W. Mao, Biomaterials 2019, 216, 119280.

[32]

W.-L. Liu, T. Liu, A-M. Cao, S.-Y. Qin, J. Feng, X.-Z. Zhang, Chem. Eng. J. 2022, 439, 135711.

[33]

Q. Dong, X. Wang, X. Hu, L. Xiao, L. Zhang, L. Song, M. Xu, Y. Zou, L. Chen, Z. Chen, W. Tan, Angew. Chem. Int. Ed. 2018, 57, 177.

[34]

M. Aioub, S. R. Panikkanvalappil, M. A El-Sayed, ACS Nano 2017, 11, 579.

[35]

R. J. DeBerardinis, N. S. Chandel, Nat. Metab. 2020, 2, 127.

[36]

L.-H. Fu, C. Qi, J. Lin, P. Huang, Chem. Soc. Rev. 2018, 47, 6454.

[37]

D.-Y. Zhang, Y. Liang, M. Wang, M. R. Younis, H. Yi, X. Zhao, J. Chang, Y. Zheng, W. Guo, X. Yu, Adv. Healthc. Mater. 2023, 12, 2203177.

[38]

W. Sun, C. Zhu, J. Song, S.-C. Ji, B.-P. Jiang, H. Liang, X.-C. Shen, Adv. Healthc. Mater. 2023, 12, 2300385.

[39]

C. Zhang, D. Ni, Y. Liu, H. Yao, W. Bu, J. Shi, Nat. Nanotechnol. 2017, 12, 378.

[40]

Z. Yu, P. Zhou, W. Pan, N. Li, B. Tang, Nat. Commun. 2018, 9, 5044.

[41]

L.-H. Fu, Y.-R. Hu, C. Qi, T. He, S. Jiang, C. Jiang, J. He, J. Qu, J. Lin, P. Huang, ACS Nano 2019, 13, 13985.

[42]

L. Shan, W. Fan, W. Wang, W. Tang, Z. Yang, Z. Wang, Y. Liu, Z. Shen, Y. Dai, S. Cheng, O. Jacobson, K. Zhai, J. Hu, Y. Ma, D. O. Kiesewetter, G. Gao, X. Chen, ACS Nano 2019, 13, 8903.

[43]

X. Li, C. Jiang, Q. Wang, S. Yang, Y. Cao, J.-N. Hao, D. Niu, Y. Chen, B. Han, X. Jia, P. Zhang, Y. Li, Adv. Sci. 2022, 9, 2104671.

[44]

B. Faubert, A. Solmonson, R. J. DeBerardinis, Science 2020, 368, eaaw5473.

[45]

X. Zhong, X. He, Y. Wang, Z. Hu, H. Huang, S. Zhao, P. Wei, D. Li, J. Hematol. Oncol. 2022, 15, 160.

[46]

T.-H. Tsai, C.-C. Yang, T.-C. Kou, C.-E. Yang, J.-Z. Dai, C.-L. Chen, C.-W. Lin, J. Cell. Physiol. 2021, 236, 4669.

[47]

F. Dupuy, S. Tabariès, S. Andrzejewski, Z. Dong, J. Blagih, Matthew G. Annis, A. Omeroglu, D. Gao, S. Leung, E. Amir, M. Clemons, A. Aguilar-Mahecha, M. Basik, Emma E. Vincent, J. St-Pierre, Russell G. Jones, Peter M. Siegel, Cell Metab. 2015, 22, 577.

[48]

J. Du, M. Yang, S. Chen, D. Li, Z. Chang, Z. Dong, Oncogene 2016, 35, 3314.

[49]

K. Liu, L. Zhang, H. Lu, Y. Wen, B. Bi, G. Wang, Y. Jiang, L. Zeng, J. Zhao, J. Nanobiotechnol. 2023, 21, 64.

[50]

X. He, Y. Hao, B. Chu, Y. Yang, A. Sun, K. Shi, C. Yang, K. Zhou, Y. Qu, H. Li, Z. Qian, Nano Today 2021, 39, 101174.

[51]

J. Shen, J. Wolfram, M. Ferrari, H. Shen, Mater. Today 2017, 20, 95.

[52]

L. Zhang, S.-S. Wan, C.-X. Li, L. Xu, H. Cheng, X.-Z. Zhang, Nano Lett. 2018, 18, 7609.

[53]

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, J. Am. Chem. Soc. 2014, 136, 15684.

[54]

H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Nano Lett. 2017, 17, 384.

[55]

J. Zeng, D. Goldfeld, Y. Xia, Angew. Chem. Int. Ed. 2013, 52, 4169.

[56]

Z. Zha, X. Yue, Q. Ren, Z. Dai, Adv. Mater. 2013, 25, 777.

[57]

Y. Guo, Q. Sun, F.-G. Wu, Y. Dai, X. Chen, Adv. Mater. 2021, 33, 2007356.

[58]

C. Xu, Y. Wang, H. Yu, H. Tian, X. Chen, ACS Nano 2018, 12, 8255.

[59]

Y. Ci, Y. Zhang, Y. Liu, S. Lu, J. Cao, H. Li, J. Zhang, Z. Huang, X. Zhu, J. Gao, M. Han, Phytother. Res. 2018, 32, 1373.

[60]

D.-Y. Zhang, H. Liu, T. He, M. R. Younis, T. Tu, C. Yang, J. Zhang, J. Lin, J. Qu, P. Huang, Small 2021, 17, 2005113.

[61]

S. Lin, Y. Cheng, H. Zhang, X. Wang, Y. Zhang, Y. Zhang, L. Miao, X. Zhao, H. Wei, Small 2020, 16, 1902123.

[62]

L. Li, H. Ma, D. Li, Q. Shu, T. Wang, X. Song, H. Xu, Cell Discov. 2016, 2, 16025.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/