PDF
Abstract
Nanoparticle surfactants (NPSs) that form via the reversible non-covalent interactions between nanoparticles (NPs) and polymer ligands at the oil-water interface have received great attention in constructing structured liquids with unique stimuli-responsiveness. Introducing dynamic covalent interactions to generate NPSs is expected to achieve a balance between high mechanical strength and dynamic responsiveness of the interfacial assemblies. Here, we present the formation, assembly, and jamming of a new type of NPS by the co-assembly between polydopamine NPs (PDA NPs) and poly(styrene-co-methacrylamidophenylboronic acid) at the oil-water interface. Dynamic covalent boronate ester bonds form in situ at the interface and show multiple responsiveness when applying stimuli such as pH, H2O2, and temperature, allowing the controlled assembly/jamming of NPSs and reconfiguration of liquid constructs. Due to the photothermal property of PDA NPs, the temperature responsiveness of boronate ester bonds can also be triggered by irradiating the biphasic system with near-infrared (NIR) light. Moreover, when bringing two droplets encapsulated with NPSs into contact and irradiating the contact area by NIR, thermal welding of droplets can be realized, offering a straightforward to construct droplet networks and modular liquid devices.
Keywords
dynamic covalent chemistry
/
liquid-liquid interface
/
nanoparticle surfactants
/
structured liquids
/
welding
Cite this article
Download citation ▾
Kaijuan Li, Yuzheng Luo, Yunhui Wen, Wenrui Shan, Shaowei Shi.
Reconfigurable liquids enabled by dynamic covalent chemistry.
Aggregate, 2024, 5(6): e621 DOI:10.1002/agt2.621
| [1] |
S. Shi, T. P. Russell, Adv. Mater. 2018, 30, 1800714.
|
| [2] |
Z. Yang, D. Snyder, A. Sathyan, A. Balazs, T. Emrick, Adv. Funct. Mater. 2023, 33, 2306819.
|
| [3] |
M. Cui, T. Emrick, T. P. Russell, Science 2013, 342, 460.
|
| [4] |
X. Liu, N. Kent, A. Ceballos, R. Streubel, Y. Jiang, Y. Chai, P. Y. Kim, J. Forth, F. Hellman, S. Shi, D. Wang, B. A. Helms, P. D. Ashby, P. Fischer, T. P. Russell, Science 2019, 365, 264.
|
| [5] |
M. Kamkar, A. Ghaffarkhah, R. Ajdary, Y. Lu, F. Ahmadijokani, S. E. Mhatre, E. Erfanian, U. Sundararaj, M. Arjmand, O. J. Rojas, Small 2022, 18, 2200220.
|
| [6] |
Y. Luo, Y. Yang, Y. Wang, Z. Wu, T. P. Russell. S. Shi, Angew. Chem. Int. Ed. 2022, 202207199.
|
| [7] |
L. Bai, S. Huan, B. Zhao, Y. Zhu, J. Esquena, F. Chen, G. Gao, E. Zussman, G. Chu, O. J. Rojas, ACS Nano 2020, 14, 13380.
|
| [8] |
J. Forth, P. Y. Kim, G. Xie, X. Liu, B. A. Helms, T. P. Russell, Adv. Mater. 2019, 31, 1806370.
|
| [9] |
G. Xie, S. Zhu, P. Y. Kim, S. Jiang, Q. Yi, P. Li, Z. Chu, B. A. Helms, T. P. Russell, Angew. Chem. Int. Ed. 2023, 62, e202307713.
|
| [10] |
M. Kamkar, A. Ghaffarkhah, R. Ajdary, Y. Lu, F. Ahmadijokani, S. E. Mhatre, E. Erfanian, U. Sundararaj, M. Arjmand, O. J. Rojas, Adv. Mater. 2023, 35, 2302826.
|
| [11] |
W. Feng, Y. Chai, J. Forth, P. D. Ashby, T. P. Russell, B. A. Helms. Nat. Commun. 2019, 10, 1095.
|
| [12] |
B. Qian, S. Shi, H. Wang, T. P. Russell, ACS Appl. Mater. Interfaces 2020, 12, 13551.
|
| [13] |
H. Sun, L. Li, T. P. Russell, S. Shi, J. Am. Chem. Soc. 2020, 142, 8591.
|
| [14] |
P. Gu, X. Luo, S. Zhou, D. Wang, Z. Li, Y. Chai, Y. Zhang, S. Shi, T. P. Russell, Angew. Chem. Int. Ed. 2023, 202303789.
|
| [15] |
Y. Wen, K. Li, J. Luo, W. Feng, S. Shi, Adv. Mater. 2024, 2403015. http://doi.org/10.1002/adma.202403015
|
| [16] |
X. Lian, S. Liao, W. Han, C. Song, Y. Wang, Small 2023, 19, 2301039.
|
| [17] |
S. Sun, S. Li, W. Feng, J. Luo, T. P. Russell, S. Shi, Nat. Commun. 2024, 15, 1058.
|
| [18] |
K. Li, Y. Wen, Z. Xia, Z. Zhang, J. Liu, T. P. Russell, F. Shi, S. Shi, Macromolecules 2024, 57, 63.
|
| [19] |
S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898.
|
| [20] |
T. Maeda, H. Otsuka, A. Takahara, Prog. Polym. Sci. 2009, 34, 581.
|
| [21] |
R. J. Wojtecki, M. A. Meador, S. J. Rowan, Nat. Mater. 2011, 10, 14.
|
| [22] |
Y. Jin, C. Yu, R. J Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634.
|
| [23] |
Y. Guan, Y Zhang, Chem. Soc. Rev. 2013, 42, 8106.
|
| [24] |
A. Rekondo, R. Martin, A. R. Luzuriaga, G. Cabanero, H. J. Grande, I. Odriozola, Mater. Horiz. 2014, 1, 237.
|
| [25] |
Z. C. Zentner, F. Anson, S. Thayumanavan, T. M. Swager, J. Am. Chem. Soc. 2019, 141, 18048.
|
| [26] |
G. Ren, B. Li, L. Ren, W. Di, L. Tian, P. Zhang, W. Shao, J. He, D. Sun, Langmuir 2021, 37, 6632.
|
| [27] |
C. Agashe, R. Varshney, R. Sangwan, A. K. Gill, M. Alam, D. Patra, Langmuir 2022, 38, 8296.
|
| [28] |
J. J. Cash, T. Kubo, D. J. Dobbins, B. S. Sumerlin, Polym. Chem. 2018, 9, 2011.
|
| [29] |
M. Röttger, T. Domenech, R. V. D. Weegen, A. Breuillac, R. Nicolaÿ, L. Leibler, Science 2017, 356, 62.
|
| [30] |
D. R. Amin, C. Sugnaux, K. H. A. Lau, P. B. Messersmith, Biomimetics 2017, 2, 17.
|
| [31] |
S. Friedman, B. Pace, R. Pizer, J. Am. Chem. Soc. 1974, 96, 5381.
|
| [32] |
H. Guo, D. Yang, M. Yang, Y. Gao, Y. Liu, H. Li, Soft Matter 2016, 12, 9683.
|
| [33] |
Z. Sun, T. Feng, T. P. Russell, Langmuir 2013, 29, 13407.
|
| [34] |
R. Wu, J. Liu, D. Chen, J. Pan, Appl. Nano Mater. 2019, 2, 4333.
|
| [35] |
L. Yang, X. Chen, Z. Lv, C. Luo, M. Chao, P. Zhang, L. Yan, Sep. Purif. Technol. 2024, 348, 127525.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.