Scaffold-free three-dimensional cartilage regeneration based on cartilaginous organoids bioassembly technology

Yingying Huo , Zheng Ci , Shiqi Wu , Shaoqing Feng , Yuyan Sun , Genke Li , Yu Liu , Yujie Hua , Yixin Zhang , Guangdong Zhou

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e619

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e619 DOI: 10.1002/agt2.619
RESEARCH ARTICLE

Scaffold-free three-dimensional cartilage regeneration based on cartilaginous organoids bioassembly technology

Author information +
History +
PDF

Abstract

Cartilage tissue engineering is a promising strategy to repair damaged tissue and reconstruct organ function, but the scaffold-free cartilage regeneration technology is currently limited in its ability to construct three-dimensional (3D) shapes, maintain the chondrogenic phenotype, and express cartilage-specific extracellular matrix (ECM). Recently, cartilaginous organoids (COs), multicellular aggregates with spheroid architecture, have shown great potential in miniaturized cartilage developmental models in vitro. However, high-efficiency and transferable in vivo organoid-based 3D cartilage regeneration technology for preclinical research needs further exploration. In this study, we develop novel cartilaginous organoids bioassembly (COBA) strategy to achieve scaffold-free 3D cartilage regeneration, which displays batch-to-batch efficiency, structural integration, and functional reconstruction. For underlying molecule mechanism, cellular adhesion proteins significantly regulate cell aggregation and cytoskeleton reorganization to form cartilaginous spheroids, and the hypoxic microenvironment created by high-density cell aggregates synergistically activates hypoxia-inducible factor-1α-mediated glycolytic metabolism reprogramming to maintain the chondrogenic phenotype and promote cartilage-specific ECM deposition. Furthermore, separated COs can integrate into a complete and continuous cartilage tissue through the COBA approach, and thus facilitate raising the nasal dorsa in goats after minimally invasive injection. This study thus demonstrates the promise of COBA technology to achieve scaffold-free 3D cartilage regeneration for organoid-based translational applications.

Keywords

cartilage tissue engineering / cartilaginous organoids / cell aggregates / scaffold-free regeneration

Cite this article

Download citation ▾
Yingying Huo, Zheng Ci, Shiqi Wu, Shaoqing Feng, Yuyan Sun, Genke Li, Yu Liu, Yujie Hua, Yixin Zhang, Guangdong Zhou. Scaffold-free three-dimensional cartilage regeneration based on cartilaginous organoids bioassembly technology. Aggregate, 2024, 5(6): e619 DOI:10.1002/agt2.619

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Sato, T. Nakamura, Lancet 2008, 372, 2003.

[2]

D. J. Huey, J. C. Hu, K. A. Athanasiou, Science 2012, 338, 917.

[3]

L. Fu, L. Li, Q. Bian, B. Xue, J. Jin, J. Li, Y. Cao, Q. Jiang, H. Li, Nature 2023, 618, 740.

[4]

S. Taheri, H. S. Ghazali, Z. S. Ghazali, A. Bhattacharyya, I. Noh, Research 2023, 27, 22.

[5]

J. Wei, D. T Baptista-Hon, Z. Wang, G. Li, T. Herrler, C. Dai, K. Liu, B. Yu, X. Chen, M. Yang, D. Han, Y. Gao, R. L. Huang, L. F. Guo, K. Zhang, Q. F. Li, Cell Rep. Med. 2023, 4, 101156.

[6]

L. Jia, Y. Hua, J. Zeng, W. Liu, D. Wang, G. Zhou, X. Liu, H. Jiang, Bioact. Mater. 2022, 16, 66.

[7]

D. Wang, J. Zeng, H. Zhu, S. Liu, L. Jia, W. Liu, Q. Wang, S. Wang, W. Liu, J. Zhou, H. Chen, X. Liu, H. Jiang, Aggregate 2024, e477. http://doi.org/10.1002/agt2.477

[8]

I. Fulco, S. Miot, M. D. Haug, A. Barbero, A. Wixmerten, S. Feliciano, F. Wolf, G. Jundt, A. Marsano, J. Farhadi, Lancet 2014, 384, 337.

[9]

P. S. Wiggenhauser, J. T. Schantz, N. Rotter, Regen. Med. 2017, 12, 303.

[10]

Y. Huo, Y. Xu, X. Wu, E. Gao, A. Zhan, Y. Chen, Y. Zhang, Y. Hua, W. Swieszkowski, Y. S. Zhang, G. Zhou, Adv. Sci. 2022, 9, 2202181.

[11]

Y. Sun, Y. Huo, X. Ran, H. Chen, Q. Pan, Y. Chen, Y. Zhang, W. Ren, X. Wang, G. Zhou, Y. Hua, Bioact. Mater. 2024, 32, 52.

[12]

Z. Zhang, Y. Chen, S. Wang, F. Zhao, X. Wang, F. Yang, J. Shi, Z. Ge, W. Ding, Y. Yang, J. Zhang, T. Zou, J. Yu, D. Jiang, Sci. Transl. Med. 2019, 11, eaao0750.

[13]

Y. Hua, H. Xia, L. Jia, J. Zhao, D. Zhao, X. Yan, Y. Zhang, S. Tang, G. Zhou, L. Zhu, Q. Lin, Sci. Adv. 2021, 7, eabg0628.

[14]

Y. Hua, Y. Huo, B. Bai, J. Hao, G. Hu, Z. Ci, X. Wu, M. Yu, X. Wang, H. Chen, W. Ren, Y. Zhang, X. Wang, G. Zhou, Mater. Today Bio. 2022, 17, 100489.

[15]

Z. Tu, Y. Zhong, H. Hu, D. Shao, R. Haag, M. Schirner, J. Lee, B. Sullenger, K. W. Leong, Nat. Rev. Mater. 2022, 7, 557.

[16]

Y. Huo, B. Bai, R. Zheng, Y. Sun, Y. Yu, X. Wang, H. Chen, Y. Hua, Y. Zhang, G. Zhou, X. Wang, Adv. Healthc. Mater. 2023, 12, 2203084.

[17]

X. Li, X. Li, J. Yang, Y. Du, L. Chen, G. Zhao, T. Ye, Y. Zhu, X. Xu, L. Deng, W. Cui, Research 2023, 6, 0131.

[18]

J. Ran, Y. Fei, C. Wang, D. Ruan, Y. Hu, Z. Zheng, X. Chen, Z. Yin, C. Tang, Y. Chen, Sci. Eng. 2021, 7, 881.

[19]

Y. Ge, Y. Gong, Z. Xu, Y. Lu, W. Fu, Tissue Eng. Part B Rev. 2016, 22, 114.

[20]

J. Xue, A. He, Y. Zhu, Y. Liu, D. Li, Z. Yin, W. Zhang, W. Liu, Y. Cao, G. Zhou, Biomed. Mater. 2018, 13, 025016.

[21]

Y. Gong, J. Xue, W. Zhang, G. Zhou, Y. Cao, Biomaterials 2011, 32, 2265.

[22]

W. Xu, T. Wang, Y. Wang, X. Wu, Y. Chen, D. Song, Z. Ci, Y. Cao, Y. Hua, G. Zhou, Y. Liu, Front. Bioeng. Biotechnol. 2022, 10, 884036.

[23]

G. Zhou, H. Jiang, Z. Yin, Y. Liu, Q. Zhang, C. Zhang, B. Pan, J. Zhou, X. Zhou, H. Sun, D. Li, A. He, Z. Zhang, W. Zhang, W. Liu, Y. Cao, eBioMedicine 2018, 28, 287.

[24]

L. Zhang, A. He, Z. Yin, Z. Yu, X. Luo, W. Liu, W. Zhang, Y. Cao, Y. Liu, G. Zhou, Biomaterials 2014, 35, 4878.

[25]

Q. Wang, X. Ran, J. Wang, S. Wang, P. Zhang, E. Gao, B. Bai, J. Zhang, G. Zhou, D. Lei, Adv. Fiber Mater. 2023, 5, 1008.

[26]

K. M. Hubka, R. L. Dahlin, V. V. Meretoja, F. K. Kasper, A. G. Mikos, Tissue Eng. Part B Rev. 2014, 20, 641.

[27]

A. He, A. Ye, N. Song, N. Liu, G. Zhou, Y. Liu, X. Ye. Am. J. Transl. Res. 2020, 12, 2903.

[28]

B. L. LeSavage, R. A. Suhar, N. Broguiere, M. P. Lutolf, S. C. Heilshorn, Nat. Mater. 2022, 21, 143.

[29]

W. Hu, M. A. Lazar, Nat. Rev. Endocrinol. 2022, 18, 744.

[30]

W. Kim, Y. Gwon, S. Park, H. Kim, J. Kim, Bioact. Mater. 2023, 19, 50.

[31]

N. Gjorevski, M. Nikolaev, T. E. Brown, O. Mitrofanova, N. Brandenberg, F. W. DelRio, F. M. Yavitt, P. Liberali, K. S. Anseth, M. P. Lutolf, Science 2022, 375, eaaw9021.

[32]

A. Elosegui-Artola, A. Gupta, A. J. Najibi, B. R. Seo, R. Garry, C. M. Tringides, I. Lázaro, M. Darnell, W. Gu, Q. Zhou, D. A. Weitz, L. Mahadevan, D. J. Mooney, Nat. Mater. 2022, 22, 117.

[33]

S. Kim, S. Min, Y. S. Chio, S. H. Jo, J. H. Jung, K. S. Han, J. Kim, S. An, Y. W. Ji, Y. G. Kim, S. W. Cho, Nat. Commun. 2022, 13, 1692.

[34]

Z. Chen, R. Sugimura, Y. S. Zhang, C. Ruan, C. Wen, Aggregate 2024, 5, e478.

[35]

M. Xia, M. Wu, Y. Li, Y. Liu, G. Jia, Y. Lou, J. Ma, Q. Gao, M. Xie, Y. Chen, Y. He, H. Li, W. Li, Sci. Adv. 2023, 9, eadf2664.

[36]

M. A. Lancaster, N. S. Corsini, S. Wolfinger, E. H. Gustafson, A. W. Phillips, T. R. Burkard, T. Otani, F. J. Livesey, J. A. Knoblich, Nat. Biotechnol. 2017, 35, 659.

[37]

P. Hofbauer, S. M. Jahnel, N. Papai, M. Giesshammer, A. Deyett, C. Schmidt, M. Penc, K. Tavernini, N. Grdseloff, C. Meledeth, Cell 2021, 184, 3299.

[38]

K. A. Homan, N. Gupta, K. T. Kroll, D. B. Kolesky, M. Skylar-Scott, T. Miyoshi, D. Mau, M. T. Valerius, T. Ferrante, J. V. Bonventre, J. A. Lewis, R. Morizane, Nat. Methods 2019, 16, 255.

[39]

X. Wang, N. Liu, H. Zhang, Z. Yin, Z. Zha, J. Transl. Med. 2023, 21, 926.

[40]

K. Abe, A. Yamashita, M. Morioka, N. Horike, Y. Takei, S. Koyamatsu, K. Okita, S. Matsuda, N. Tsumaki, Nat. Commun. 2023, 14, 804.

[41]

W. L. Tam, L. F. Mendes, X. K. Chen, R. Lesage, I. V. Hoven, E. Leysen, G. Kerckhofs, K. Bosmans, Y. C. Chai, A. Yamashita, Stem Cell Res. Ther. 2021, 12, 513.

[42]

D. Song, M. Yu, J. Liu, W. Xu, J. Li, B. Li, Y. Cao, G. Zhou, Y. Hua, Y. Liu, ACS Biomater. Sci. Eng. 2023, 9, 4969.

[43]

J. Hao, B. Bai, Z. Ci, J. Tang, G. Hu, C. Dai, M. Yu, M. Li, W. Zhang, Y. Zhang, W. Ren, Y. Hua, G. Zhou, Bioact. Mater. 2022, 14, 97.

[44]

K. H. Vining, D. J. Mooney, Nat. Rev. Mol. Cell Biol. 2017, 18, 728.

[45]

N. Huebsch, P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, D. J. Mooney, Nat. Mater. 2010, 9, 518.

[46]

H. Li, X. Li, X. Jing, M. Li, Y. Ren, J. Chen, C. Yang, H. Wu, F. Guo, Int. J. Mol. Med. 2018, 42, 3181.

[47]

V. V. Meretoja, R. L. Dahlin, S. Wright, F. K. Kasper, A. G. Mikos, Biomaterials 2013, 34, 4266.

[48]

E. Devemy, O. W. Blaschuk, Peptides 2009, 30, 1539.

[49]

J. Suh, H. Kim, J. Min, H. J. Yeon, M. Hemberg, L. Scimeca, M. R. Wu, H. G. Kang, Y. J. Kim, J. H. Kim, Cell Rep. Med. 2023, 5, 101342.

[50]

J. A. Leedale, B. Lucendo-Villarin, J. Meseguer-Ripolles, A. Kasarinaite, S. D. Webb, D. C. Hay, PLoS One 2021, 16, e0244070.

[51]

J. A Delgado-SanMartin, J. I. Hare, A. P. S. Moura, J. W. T. Yates, PLoS Comput. Biol. 2015, 11, e1004550.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

224

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/