Regulating room temperature phosphorescence of carbazole quaternization pyridine in polymer through Hofmeister effect

Runying He , Yun Yang , Qian Zhou , Shasha Chang , Yi Cheng , Xiurong Ma , Yonggang Shi , Liyan Zheng , Qiue Cao

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e611

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e611 DOI: 10.1002/agt2.611
RESEARCH ARTICLE

Regulating room temperature phosphorescence of carbazole quaternization pyridine in polymer through Hofmeister effect

Author information +
History +
PDF

Abstract

Hofmeister effect is a famous physical chemistry phenomenon that was reported a hundred years ago, which firstly refers to the action of certain salts to decrease the solubility of proteins while others increase. The Hofmeister effect on the luminescent properties of cationic organic fluorophore is still obscure, especially for their room temperature phosphorescence (RTP). Herein, hydrophilic groups (quaternization pyridine) were introduced into carbazole molecules to obtain a series of carbazole derivatives (named CZ-Py+) with different counter anions in the Hofmeister series. These carbazole derivatives displayed tunable fluorescent color from cyan to yellow in the solid state following the Hofmeister sequence and anti-Hofmeister behavior in an aqueous solution. Moreover, RTP material with tunable emission color and lifetime was achieved by doping CZ-Py+ with Hofmeister series anion in polymethyl methacrylate and polyvinyl alcohol, which displayed good performance in time getting information encryption and anti-counterfeiting.

Keywords

anti-counterfeiting / Hofmeister / quaternization pyridine / room temperature phosphorescence

Cite this article

Download citation ▾
Runying He, Yun Yang, Qian Zhou, Shasha Chang, Yi Cheng, Xiurong Ma, Yonggang Shi, Liyan Zheng, Qiue Cao. Regulating room temperature phosphorescence of carbazole quaternization pyridine in polymer through Hofmeister effect. Aggregate, 2024, 5(6): e611 DOI:10.1002/agt2.611

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhao, J. Yang, C. Liang, Z. Wang, Y. Zhang, G. Li, J. Qu, X. Wang, Y. Zhang, P. Sun, J. Shi, B. Tong, H. Xie, Z. Cai, Y. Dong, Angew. Chem. Int. Ed. 2024, 63, e202317431.

[2]

Y. Wang, H. Gao, J. Yang, M. Fang, D. Ding, B. Z. Tang, Z. Li, Adv. Mater. 2021, 33, 2007811.

[3]

W. Qin, J. Ma, Y. Zhou, Q. Hu, Y. Zhou, G. Liang, Chem. Eng. J. 2020, 400, 125934.

[4]

X. Zhang, J. Liu, B. Chen, X. He, X. Li, P. Wei, P. Gao, G. Zhang, J. W. Y. Lam, B. Z. Tang, Matter 2022, 5, 3499.

[5]

Y. Liu, C. Wu, Y. Niu, T. Meng, J. He, J. Phys. Chem. Lett. 2024, 15, 1584.

[6]

J. Lai, B. Zhou, K. Wang, D. Yan, J. Phys. Chem. Lett. 2023, 14, 7165.

[7]

G. Xiao, Y. Ma, Z. Qi, X. Fang, T. Chen, D. Yan, Chem. Sci. 2024, 15, 3625.

[8]

C. Xing, B. Zhou, D. Yan, W. Fang, Adv. Sci. 2024, 11, 2310262.

[9]

C. Xing, Z. Qi, B. Zhou, D. Yan, W. Fang, Angew. Chem. Int. Ed. 2024, 63, e202402634.

[10]

C. Xing, B. Zhou, D. Yan, W. Fang, CCS Chem. 2023, 5, 2866.

[11]

L. Ma, Y. Liu, H. Tian, X. Ma. JACS Au 2023, 3, 1835.

[12]

Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. Wu, P. Lu, A. Lien, M. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181.

[13]

A. Lv, W. Ye, X. Jiang, N. Gan, H. Shi, W. Yao, H. Ma, Z. An, W. Huang, J. Phys. Chem. Lett. 2019, 10, 1037.

[14]

Y. Kong, Y. Wang, X. Huang, W. Liang, Y. Zhao, Aggregate 2024, 5, e395.

[15]

B. Zhou, Z. Qi, M. Dai, C. Xing, D. Yan, Angew. Chem. Int. Ed. 2023, 62, e202309913.

[16]

X. Fang, Y. Tang, Y. Ma, G. Xiao, P. Li, D. Yan, Sci. China Mater. 2023, 66, 664.

[17]

H. Li, H. Li, W. Wang, Y. Tao, S. Wang, Q. Yang, Y. Jiang, C. Zheng, W. Huang, R. Chen, Angew. Chem. Int. Ed. 2020, 59, 4756.

[18]

X. Chen, Z. Liu, W. Jin, J. Phys. Chem. A 2020, 124, 2746.

[19]

Y. Wen, S. Zhao, Z. Yang, Z. Feng, Z. Yang, S. Zhang, H. Liu, B. Yang, J. Phys. Chem. Lett. 2024, 15, 2690.

[20]

G. Jiang, J. Yu, J. Wang, B. Z. Tang, Aggregate 2022, 3, e285.

[21]

S. Cai, X. Yao, H. Ma, H. Shi, Z. An, Aggregate 2023, 4, e320.

[22]

J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S. H. P. Sung, G. Shan, J. W. Y. Lam, Z. Shuai, B. Z. Tang, Nat. Commun. 2018, 9, 2963.

[23]

X. Yang, S. Wang, K. Sun, H. Liu, M. Ma, S. Zhang, B. Yang, Angew. Chem. Int. Ed. 2023, 62, e202306475.

[24]

Z. Wang, C. Zhu, S. Yin, Z. Wei, J. Zhang, Y. Fan, J. Jiang, M. Pan, C. Su, Angew. Chem. Int. Ed. 2019, 58, 3481.

[25]

S. Xiong, Y. Xiong, D. Wang, Y. Pan, K. Chen, Z. Zhao, D. Wang, B. Z. Tang, Adv. Mater. 2023, 35, 2301874.

[26]

R. Liu, C. Liu, C. Fu, Z. Zhu, K. Chen, C. Li, L. Wang, Y. Huang, Z. Lu, Angew. Chem. Int. Ed. 2024, 63, e2023125.

[27]

F. Hofmeister, Exp. Pathol. Pharmakol. 1888, 24, 247.

[28]

E. Wilson, Chem. Eng. News 2007, 85, 47.

[29]

W. Lin, G. Zhang, X. Zhu, P. Yu, L. O. Alimi, B. A. Moosa, J. L. Sessler, N. M. Khashab, J. Am. Chem. Soc. 2023, 145, 12609.

[30]

P. Wang, S. Cao, T. Yin, X. Ni, Chinese Chem. Lett. 2021, 32, 1679.

[31]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.

[32]

W. Yang, Y. Yang, Y. Qiu, X. Cao, Z. Huang, S. Gong, C. Yang, Mater. Chem. Front. 2020, 4, 2047.

[33]

X. Wang, C. Qi, Z. Fu, H. Zhang, J. Wang, H. Feng, K. Wang, B. Zou, J. W. Y. Lam, B. Z. Tang, Mater. Horiz. 2021, 8, 630.

[34]

Y. Gong, P. Zhang, Y. Gu, J. Wang, M. Han, C. Chen, X. Zhan, Z. Xie, B. Zou, Q. Peng, Z. Chi, Z. Li, Adv. Optical Mater. 2018, 6, 1800198.

[35]

N. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. Eur. J. 2014, 20, 15349.

[36]

Z. Qiu, Z. Yang, W. Chen, L. Xing, S. Hu, S. Ji, Q. Yang, N. Cai, X. Ouyang, Y. Huo, J. Mater. Chem. C 2020, 8, 4139.

[37]

H. Wang, K. Wang, J. Chen, X. Zhang, L. Zhou, X. Fan, Y. Cheng, X. Hao, J. Yu, X. Zhang, Adv. Funct. Mater. 2023, 33, 2304398.

[38]

J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840.

[39]

Y. Xie, X. Ding, J. Wang, G. Ye, Angew. Chem. Int. Ed. 2023, 62, e2023139.

[40]

P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Crystallogr. 2021, 54, 1006.

[41]

M. Abraham, T. Murtola, R. Schulz, S. Páll, J. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1, 19.

[42]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[43]

D. L. Rabenstein, Nat. Prod. Rep. 2002, 19, 312.

[44]

R. Jelinek, S. Kolusheva, Chem. Rev. 2004, 104, 5987.

[45]

J. Xu, M. Huang, H. Pang, Z. Weng, G. Hu, S. Zhang, Q. Yang, Q. Wu, Aggregate 2024, e546. http://doi.org/10.1002/agt2.546

[46]

W. Guo, S. Ma, H. Wang, L. Qiao, L. Chen, C. Hong, B. Liu, X. Zheng, H. Peng, Aggregate 2024, 5, e415.

[47]

X. Fang, Y. Zheng, Y. Duan, Y. Liu, W. Zhong, Anal. Chem. 2019, 91, 4824.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/