The careful selection of zwitterionic nanoparticle coating results in rapid and efficient cell labeling for imaging-based cell tracking

Nicholas D. Calvert , Luciana Yu , Olivia C. Sehl , Julia J. Gevaert , Natasha N. Knier , Angelie Rivera-Rodriguez , Clara S. Goulet , Nitara Fernando , Samantha Flood , Carlos M. Rinaldi-Ramos , Paula J. Foster , Adam J. Shuhendler

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e609

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e609 DOI: 10.1002/agt2.609
RESEARCH ARTICLE

The careful selection of zwitterionic nanoparticle coating results in rapid and efficient cell labeling for imaging-based cell tracking

Author information +
History +
PDF

Abstract

The increased clinical application of cell-based therapies has resulted in a parallel increase in the need for non-invasive imaging-based approaches for cell tracking, often through labeling with nanoparticles. An ideal nanoparticle for such applications must be biologically compatible as well as readily internalized by cells to ensure adequate and stable cell loading. Surface coatings have been used to make nanoparticle trackers suitable for these purposes, but those currently employed tend to have cytotoxic effects. Zwitterionic ligands are known to be biocompatible and antifouling; however, head-to-head evaluation of specific zwitterionic ligands for cell loading has not yet been explored. Magnetic particle imaging (MPI) detects superparamagnetic iron oxide nanoparticles (SPIONs) using time-varying magnetic fields. BecauseMPI can produce high-contrast, real-time images with no tissue depth limitation, it is an ideal candidate for in vivo cell tracking. In this work, we have conjugated hard (permanently charged) and soft (pKa-dependently charged) biomimetic zwitterionic ligands to SPIONs and characterized how these ligands changed SPION physicochemical properties.We have evaluated cellular uptake and subcellular localization between zwitterions, how the improvement in cell uptake generated stronger MPI signal for smaller numbers of cells, and how these cells can be tracked in an animal model with greater sensitivity for longer periods of time. Our best-performing surface coating afforded high cell loading within 4 h, with full signal retention in vivo over 7 days.

Keywords

cell tracking / magnetic nanoparticle imaging (MPI) / nanoparticle functionalization / nanoparticle uptake / surface chemistry / zwitterionic ligands

Cite this article

Download citation ▾
Nicholas D. Calvert, Luciana Yu, Olivia C. Sehl, Julia J. Gevaert, Natasha N. Knier, Angelie Rivera-Rodriguez, Clara S. Goulet, Nitara Fernando, Samantha Flood, Carlos M. Rinaldi-Ramos, Paula J. Foster, Adam J. Shuhendler. The careful selection of zwitterionic nanoparticle coating results in rapid and efficient cell labeling for imaging-based cell tracking. Aggregate, 2024, 5(6): e609 DOI:10.1002/agt2.609

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. L. W Wang, M. E. Janes, N. Kumbhojkar, N. Kapate, J. R. Clegg, S. Prakash, M. K. Heavey, Z. Zhao, A. C. Anselmo, S. Mitragotri, Bioeng. Transl. Med. 2021, 6, e10214.

[2]

J. W. M Bulte, H. E Daldrup-Link, Radiology 2018, 289, 604.

[3]

C. J. Bashor, I. B. Hilton, H. Bandukwala, D. M. Smith, O. Veiseh, Nat. Rev. Drug Discov. 2022, 21, 655.

[4]

S. Kemler, A. Lohr, Cell &Gene Therapy Investment Outlook in 2022 & Beyond, 2022, https://www.cellandgene.com/doc/cell-gene-therapies-investment-outlook-in-beyond-0001. (accessed: January 2024).

[5]

R. Margiana, A. Markov, A. O. Zekiy, M. U. Hamza, K. A Al-Dabbagh, S. H. Al-Zubaidi, N. M. Hameed, I. Ahmad, R. Sivaraman, H. H. Kzar, M. E Al-Gazally, Y. F. Mustafa, H. Siahmansouri, Curr. Stem Cell Res. Ther. 2022, 13, 1.

[6]

M. Chivu-Economescu, M. Rubach, Curr. Stem Cell Res. Ther. 2016, 12, 124.

[7]

A. D. Waldman, J. M. Fritz, M. J. Lenardo, Nat. Rev. Immunol. 2020, 20, 651.

[8]

E. Guerra, R. Di Pietro, M. Basile, M. Trerotola, S. Alberti, Int. J. Mol. Sci. 2021, 23, 405.

[9]

J. L. Liesveld, N. Sharma, O. S. Aljitawi, Stem Cells 2020, 38, 1241.

[10]

L. V. Loftus, S. R. Amend, K. J. Pienta, Int. J. Mol. Sci. 2022, 23, 4723.

[11]

M. H. Amer, F. R. A. J. Rose, K. M. Shakesheff, M. Modo, L. J. White, NPJ Regen. Med. 2017, 2, 23.

[12]

M. P. Nucci, I. S. Filgueiras, J. M. Ferreira, F. A. de Oliveira, L. P. Nucci, J. B. Mamani, G. N. A. Rego, L. F. Gamarra, World J. Stem Cells 2020, 12, 381.

[13]

G. López-Cantillo, C. Urueña, B. A. Camacho, C. Ramírez-Segura, Front Immunol. 2022, 13, 878209.

[14]

S. Waiczies, T. Niendorf, G. Lombardi, Oncoimmunology 2017, 6, e1345403.

[15]

Y. Kurebayashi, P. L. Choyke, N. Sato, Nanotheranostics 2021, 5, 27.

[16]

F. Progatzky, M. J. Dallman, C. Lo Celso, Interface Focus 2013, 3, 20130001.

[17]

Y. L. Wu, Q. Ye, L. M. Foley, T. K. Hitchens, K. Sato, J. B. Williams, C. Ho, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 1852.

[18]

L. M. Lechermann, D. Lau, B. Attili, L. Aloj, F. A. Gallagher, Cancers (Basel) 2021, 13, 4042.

[19]

V. Sabapathy, J. Mentam, P. M. Jacob, S. Kumar, Stem Cells Int. 2015, 2015, 8.

[20]

H. L. M Cheng, Front Med. 2023, 10, 1193459.

[21]

U. Himmelreich, T. Dresselaers, Methods 2009, 48, 112.

[22]

A. J. Managh, S. L. Edwards, A. Bushell, K. J. Wood, E. K. Geissler, J. A. Hutchinson, R. W. Hutchinson, H. J. Reid, B. L. Sharp, Anal. Chem. 2013, 85, 10627.

[23]

A. Harizaj, B. Descamps, C. Mangodt, S. Stremersch, A. Stoppa, L. Balcaen, T. Brans, H. De Rooster, N. Devriendt, J. C. Fraire, E. Bolea-Fernandez, O. De Wever, W. Willaert, F. Vanhaecke, C. V. Stevens, S. C. De Smedt, B. Roman, C. Vanhove, I. Lentacker, K. Braeckmans, Biomater. Sci. 2021, 9, 4005.

[24]

L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, Z. Gu, Theranostics 2013, 3, 595.

[25]

C. Brekke, S. C. Morgan, A. S. Lowe, T. J. Meade, J. Price, S. C. R. Williams, M. Modo, NMR Biomed. 2007, 20, 77.

[26]

E. Bull, S. Y. Madani, R. Sheth, A. Seifalian, M. Green, A. M. Seifalian, Int. J. Nanomed. 2014, 9, 1641.

[27]

B. Gleich, J. Weizenecker, Nature 2005, 435, 1214.

[28]

X. L. C Wu, X. Y. Zhang, X. G. Steinberg, X. H. Qu, X. S. Huang, X. M. Cheng, X. T. Bliss, X. F. Du, X. J. Rao, X. G. Song, X. L. Pisani, X. T. Doyle, X. S. Conolly, X. K. Krishnan, X. G. Grant, X. M. Wintermark, Am. J. Neuroradiol. 2019, 40, 206.

[29]

T. M. Buzug, G. Bringout, M. Erbe, K. Gräfe, M. Graeser, M. Grüttner, A. Halkola, T. F. Sattel, W. Tenner, H. Wojtczyk, J. Haegele, F. M. Vogt, J. Barkhausen, K. Lüdtke-Buzug, Z. Med. Phys. 2012, 22, 323.

[30]

J. W. M Bulte, Adv. Drug Deliv. Rev. 2019, 138, 293.

[31]

O. C. Sehl, J. J. Gevaert, K. P. Melo, N. N. Knier, P. J. Foster, Tomography 2020, 6, 315.

[32]

S. Harvell-Smith, L. D. Tunga, N. T. K. Thanh, Nanoscale 2022, 14, 3658.

[33]

C. Billings, M. Langley, G. Warrington, F. Mashali, J. A. Johnson, Int. J. Mol. Sci. 2021, 22, 7651.

[34]

A. Tomitaka, H. Arami, A. Ahmadivand, N. Pala, A. J. McGoron, Y. Takemura, M. Febo, M. Nair, Sci. Rep. 2020, 10, 10115.

[35]

H. Kratz, D. Eberbeck, S. Wagner, M. Taupitz, J. Schnorr, Biomedizinische Technik 2013, 58, 509.

[36]

N. Dogan, G. Caliskan, M. Irfan, J. Mater. Sci. Mater. Electron. 2023, 34, 1.

[37]

S. Liu, A. Heshmat, J. Andrew, I. Barreto, C. M Rinaldi-Ramos, Nanoscale Adv. 2023, 5, 3018.

[38]

E. Fröhlich, Int. J. Nanomed. 2012, 7, 5577.

[39]

R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R. H. Müller, Colloids Surf. B Biointerfaces 2000, 18, 301.

[40]

F. Wang, L. Yu, M. P. Monopoli, P. Sandin, E. Mahon, A. Salvati, K. A. Dawson, Nanomedicine 2013, 9, 1159.

[41]

K. I. McConnell, S. Shamsudeen, I. M. Meraz, T. S. Mahadevan, A. Ziemys, P. Rees, H. D. Summers, R. E. Serda, J. Biomed. Nanotechnol. 2016, 12, 154.

[42]

K. Qu, Z. Yuan, Y. Wang, Z. Song, X. Gong, Y. Zhao, Q. Mu, Q. Zhan, W. Xu, L. Wang, ChemPhysMater 2022, 1, 294.

[43]

S. K. Lau, W. F. Yong, ACS Appl. Polym. Mater. 2021, 3, 4390.

[44]

S. Mondini, M. Leonzino, C. Drago, A. M. Ferretti, S. Usseglio, D. Maggioni, P. Tornese, B. Chini, A. Ponti, Langmuir 2015, 31, 7381.

[45]

S. Caspani, R. Magalhães, J. P. Araújo, C. T. Sousa, Materials 2020, 13, 2586.

[46]

L. Smith, Z. Kuncic, H. L. Byrne, D. Waddington, Cancer Nanotechnol. 2022, 13, 1.

[47]

M. Unni, A. M. Uhl, S. Savliwala, B. H. Savitzky, R. Dhavalikar, N. Garraud, D. P. Arnold, L. F. Kourkoutis, J. S. Andrew, C. Rinaldi, ACS Nano 2017, 11, 2284.

[48]

S. Liu, A. Chiu-Lam, A. Rivera-Rodriguez, R. DeGroff, S. Savliwala, N. Sarna, C. M Rinaldi-Ramos, Nanotheranostics 2021, 5, 348.

[49]

Q. Yan, H. N. Zheng, C. Jiang, K. Li, S. J. Xiao, RSC Adv. 2015, 5, 69939.

[50]

L. Lu, C. Liu, G. Li, L. J. Liu, C. H. Leung, D. L. Ma, Sens. Actuators B Chem. 2018, 257, 860.

[51]

X. Xin, P. Li, Y. Zhu, L. Shi, J. Yuan, J. Shen, Langmuir 2019, 35, 1788.

[52]

G. Kim, C. E. Yoo, M. Kim, H. J. Kang, D. Park, M. Lee, N. Huh, Bioconjug. Chem. 2012, 23, 2114.

[53]

W. Wang, X. Ji, A. Kapur, C. Zhang, H. Mattoussi, J. Am. Chem. Soc. 2015, 137, 14158.

[54]

T. Goda, Y. Imaizumi, H. Hatano, A. Matsumoto, K. Ishihara, Y. Miyahara, Langmuir 2019, 35, 8167.

[55]

Y. Zhang, Y. Zhang, K. Sun, Z. Meng, L. Chen, J. Mol. Cell Biol. 2019, 11, 1.

[56]

M. Scalise, L. Pochini, L. Console, M. A. Losso, C. Indiveri, Front Cell Dev. Biol. 2018, 6, 409495.

[57]

Y. Zhou, P. Dong, Y. Wei, J. Qian, D. Hua, Colloids Surf. B Biointerfaces 2015, 132, 132.

[58]

X. R. Zhang, B. T. Tang, S. F. Zhang, Molecules 2011, 16, 1981.

[59]

E. S. Stratford, R. W. Curley, J. Med. Chem. 1983, 26, 1463.

[60]

S. Guo, D. Jańczewski, X. Zhu, R. Quintana, T. He, K. G. Neoh, J. Colloid Interface Sci. 2015, 452, 43.

[61]

Y. Xu, H. Wang, M. Zhang, J. Zhang, W. Yan, A. María Díez-Pascual, Nanomaterials 2021, 11, 1621.

[62]

J. Mosquera, I. Garciá, M. Henriksen-Lacey, M. Martínez-Calvo, M. Dhanjani, J. L. Mascarenãs, L. M. Liz-Marzán, ACS Nano 2020, 14, 5382.

[63]

J. W. M Bulte, P. Walczak, M. Janowski, K. M. Krishnan, H. Arami, A. Halkola, B. Gleich, J. Rahmer, Tomography 2015, 1, 91.

[64]

M. Ledda, D. Fioretti, M. G. Lolli, M. Papi, C. Di Gioia, R. Carletti, G. Ciasca, S. Foglia, V. Palmieri, R. Marchese, S. Grimaldi, M. Rinaldi, A. Lisi, Nanoscale 2020, 12, 1759.

[65]

M. Van Geldermalsen, Q. Wang, R. Nagarajah, A. D. Marshall, A. Thoeng, D. Gao, W. Ritchie, Y. Feng, C. G. Bailey, N. Deng, K. Harvey, J. M. Beith, C. I. Selinger, S. A. O’Toole, J. E. J. Rasko, J. Holst, Oncogene 2016, 35, 3201.

[66]

B. D. Knapp, K. C. Huang, Annu. Rev. Biophys. 2022, 51, 499.

[67]

G. M. Cooper, The Cell: A Molecular Approach, 2nd ed., Sinauer Associates, Sunderland (MA), 2000.

[68]

Y. Wei, T. Tang, H. B. Pang, Nat. Commun. 2019, 10, 1.

[69]

Y. Liu, Z. Chen, J. Wang, J. Nanoparticle Res. 2011, 13, 199.

[70]

M. Shimobayashi, M. N. Hall, Cell Res. 2015, 26, 7.

[71]

Y. Yao, E. Jones, K. Inoki, Biomolecules 2017, 7, 51.

[72]

L. Kostura, D. L. Kraitchman, A. M. Mackay, M. F. Pittenger, J. M. W. Bulte, NMR Biomed. 2004, 17, 513.

[73]

R. Di Corato, A. Quarta, P. Piacenza, A. Ragusa, A. Figuerola, R. Buonsanti, R. Cingolani, L. Manna, T. Pellegrino, J. Mater. Chem. 2008, 18, 1991.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/