Low-entropy-penalty synthesis of giant macrocycles for good self-assembly and emission enhancement

Xiao-Na Sun , Ao Liu , Kaidi Xu , Zhe Zheng , Kai Xu , Ming Dong , Bo Ding , Jian Li , Zhi-Yuan Zhang , Chunju Li

Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e607

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (6) : e607 DOI: 10.1002/agt2.607
RESEARCH ARTICLE

Low-entropy-penalty synthesis of giant macrocycles for good self-assembly and emission enhancement

Author information +
History +
PDF

Abstract

Macrocycles are key tools for molecular recognition and self-assembly. However, traditionally prevalent macrocyclic compounds exhibit specific cavities with diameters usually less than 1 nm, limiting their range of applications in supramolecular chemistry. The efficient synthesis of giant macrocycles remains a significant challenge because an increase in the monomer number results in cyclizationentropy loss. In this study, we developed a low-entropy-penalty synthesis strategy for producing giant macrocycles in high yields. In this process, long and rigid monomers possessing two reaction modules were condensed with paraformaldehyde via Friedel–Crafts reaction. A series of giant macrocycles with cavities of sizes ranging from 2.0 to 4.7 nm were successfully synthesized with cyclization yields of up to 72%. Experimental results and theoretical calculations revealed that extending the monomer length rather than increasing the monomer numbers could notably reduce the cyclization-entropy penalty and avoid configuration twists, thereby favoring the formation of giant macrocycles with large cavities. Significantly, the excellent self-assembly capacity of these giant macrocycles promoted their assembly into organogels. The xerogels exhibited enhanced photoluminescence quantum efficiencies of up to 83.1%. Mechanism investigation revealed the excellent assembly capacity originated from the abundant π–π interactions sites of the giant macrocycles. The outstanding emission enhancement resulted from the restricted nonradiative decay processes of rotation/vibration and improved radiative decay process of fluorescence. This study provides an effective and general method for achieving giant macrocycles, thereby expanding the supramolecular toolbox for host–guest chemistry and assembly applications. Moreover, the intriguing assembly and photophysical properties demonstrate the feasibility of developing novel and unique properties by expanding the macrocycle size.

Keywords

entropy penalty / giant macrocycles / photoluminescence / self-assembly / supramolecular chemistry

Cite this article

Download citation ▾
Xiao-Na Sun, Ao Liu, Kaidi Xu, Zhe Zheng, Kai Xu, Ming Dong, Bo Ding, Jian Li, Zhi-Yuan Zhang, Chunju Li. Low-entropy-penalty synthesis of giant macrocycles for good self-assembly and emission enhancement. Aggregate, 2024, 5(6): e607 DOI:10.1002/agt2.607

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. J.Cram, T.Kaneda, R. C.Helgeson, G. M.Lein, J. Am. Chem. Soc. 1979, 101, 6752.

[2]

J. M.Lehn, J. P.Sauvage, J. Am. Chem. Soc. 1975, 97, 6700.

[3]

C. J.Pedersen, J. Am. Chem. Soc. 1967, 89, 2495.

[4]

J.Szejtli, Akadémiai Kiadó, Budapest, Hungary 1982, 34.

[5]

G.Crini, Chem. Rev. 2014, 114, 10940.

[6]

A.Ikeda, S.Shinkai, Chem. Rev. 1997, 97, 1713.

[7]

W. A.Freeman, W. L.Mock, N. Y.Shih, J. Am. Chem. Soc. 1981, 103, 7367.

[8]

J.Kim, I.-S.Jung, S.-Y.Kim, E. Lee, J.-K.Kang, S.Sakamoto, K.Yamaguchi, K.Kim, J. Am. Chem. Soc. 2000, 122, 540.

[9]

S.Liu, P. Y.Zavalij, L.Isaacs, J. Am. Chem. Soc. 2005, 127, 16798.

[10]

B. M.Rambo, H.-Y.Gong, M.Oh, J. L.Sessler, Acc. Chem. Res. 2012, 45, 1390.

[11]

E. J.Dale, N. A.Vermeulen, M.Juríček, J. C.Barnes, R. M.Young, M. R.Wasielewski, J. F.Stoddart, Acc. Chem. Res. 2016, 49, 262.

[12]

S.Lee, C.-H.Chen, A. H.Flood, Nat. Chem. 2013, 5, 704.

[13]

R.Xu, B.Hou, D.Wang, M. Wang, S. C.Chem, Sci. Chin. Chem. 2016, 59, 1306.

[14]

C.-F.Chen, Y.Han, Acc. Chem. Res. 2018, 51, 2093.

[15]

X.-N.Han, Y.Han, C.-F.Chen, J. Am. Chem. Soc. 2020, 142, 8262.

[16]

T.Ogoshi, S.Kanai, S.Fujinami, T.-A. Yamagishi, Y.Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022.

[17]

P.Della Sala, R.Del Regno, C.Talotta, A.Capobianco, N.Hickey, S.Geremia, M.De Rosa, A.Spinella, A.Soriente, P.Neri, C.Gaeta, J. Am. Chem. Soc. 2020, 142, 1752.

[18]

L.Escobar, P.Ballester, Chem. Rev. 2021, 121, 2445.

[19]

Z.Qi, C. A.Schalley, Acc. Chem. Res. 2014, 47, 2222.

[20]

T.Ogoshi, T.Kakuta, T.-A.Yamagishi, Angew. Chem. Int. Ed. 2019, 58, 2197.

[21]

X.-N.Han, Y.Han, C.-F.Chen, Chem. Soc. Rev. 2023, 52, 3265.

[22]

N. H.Evans, P. D.Beer, Angew. Chem. Int. Ed. 2014, 53, 11716.

[23]

Y.Chen, F.Huang, Z.-T.Li, Y. Liu, Sci. Chin. Chem. 2018, 61, 979.

[24]

X.-Y.Lou, Y.-W.Yang, Aggregate 2020, 1, 19.

[25]

S. B.Nimse, T.Kim, Chem. Soc. Rev. 2013, 42, 366.

[26]

Y.-C.Pan, X.-Y.Hu, D.-S.Guo, Angew. Chem. Int. Ed. 2021, 60, 2768.

[27]

Z.-T.Li, S.-B.Yu, Y.Liu, J. Tian, D.-W.Zhang, Acc. Chem. Res. 2022, 55, 2316.

[28]

Y.Song, C. A.Di, X.Yang, S. Li, W.Xu, Y.Liu, L.Yang, Z.Shuai, D. Zhang, D.Zhu, J. Am. Chem. Soc. 2007, 129, 1470.

[29]

M.Ball, Y.Zhong, B.Fowler, B. Zhang, P.Li, G.Etkin, D. W.Paley, J.Decatur, A. K. Dalsania, H.Li, S.Xiao, F.Ng, M. L.Steigerwald, C.Nuckolls, J. Am. Chem. Soc. 2016, 138, 12861.

[30]

H.Dong, Y.Wei, W.Zhang, C. Wei, C.Zhang, J.Yao, Y. S.Zhao, J. Am. Chem. Soc. 2016, 138, 1118.

[31]

M.Ball, B.Zhang, Y.Zhong, B. Fowler, S.Xiao, F.Ng, M.Steigerwald, C.Nuckolls, Acc. Chem. Res. 2019, 52, 1068.

[32]

R.Pinalli, A.Pedrini, E.Dalcanale, Chem. Soc. Rev. 2018, 47, 7006.

[33]

G. A.Hembury, V. V.Borovkov, Y.Inoue, Chem. Rev. 2008, 108, 1.

[34]

Z.Li, Y.-W.Yang, Adv. Mater. 2022, 34, 2107401.

[35]

T. L.Mako, J. M.Racicot, M.Levine, Chem. Rev. 2019, 119, 322.

[36]

K.Jie, Y.Zhou, E.Li, F.Huang, Acc. Chem. Res. 2018, 51, 2064.

[37]

T.Mitra, K. E.Jelfs, M.Schmidtmann, A.Ahmed, S. Y.Chong, D. J.Adams, A. I. Cooper, Nat. Chem. 2013, 5, 276.

[38]

H.Zhu, L.Chen, B.Sun, M. Wang, H.Li, J. F.Stoddart, F.Huang, Nat. Rev. Chem. 2023, 7, 768.

[39]

J.Jacob, K.Geßler, D.Hoffmann, H.Sanbe, K.Koizumi, S. M.Smith, T.Takaha, W.Saenger, Angew. Chem. Int. Ed. 1998, 37, 605.

[40]

A.Kieliszek, M.Malinska, Cryst. Growth Des. 2021, 21, 6862.

[41]

T.Xing, T. J.Prior, C.Redshaw, Dalton. Trans. 2021, 50, 15140.

[42]

M.Perrin, N.Ehlinger, L.Viola-Motta, S.Lecocq, I.Dumazet, S.Bouoit-Montesino, R.Lamartine, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 273.

[43]

D. R.Stewart, C. D.Gutsche, J. Am. Chem. Soc. 1999, 121, 4136.

[44]

V.Guérineau, M. Rollet, S.Viel, B.Lepoittevin, L.Costa, P.Saint-Aguet, R.Laurent, P.Roger, D.Gigmes, C. Martini, V.Huc, Nat. Commun. 2019, 10, 113.

[45]

Q.Li, S.-C.Qiu, J.Zhang, K. Chen, Y.Huang, X.Xiao, Y.Zhang, F.Li, Y.-Q.Zhang, S.-F.Xue, Q.-J. Zhu, Z.Tao, L. F.Lindoy, G.Wei, Org. Lett. 2016, 18, 4020.

[46]

X.-J.Cheng, L.-L.Liang, K.Chen, N.-N. Ji, X.Xiao, J.-X.Zhang, Y.-Q.Zhang, S.-F.Xue, Q.-J. Zhu, X.-L.Ni, Z.Tao, Angew. Chem. Int. Ed. 2013, 52, 7252.

[47]

X.-B.Hu, Z.Chen, L.Chen, L. Zhang, J.-L.Hou, Z.-T.Li, Chem. Commun. 2012, 48, 10999.

[48]

I.Dumazet, J.-B.Regnouf-de-Vains, R.Lamartine, Synth. Commun. 1997, 27, 2547.

[49]

C. D.Gutsche, B.Dhawan, K. H.No, R.Muthukrishnan, J. Am. Chem. Soc. 1981, 103, 3782.

[50]

A.Day, A. P.Arnold, R. J.Blanch, B.Snushall, J. Org. Chem. 2001, 66, 8094.

[51]

T.Ogoshi, T.Aoki, K.Kitajima, S. Fujinami, T.-a.Yamagishi, Y.Nakamoto, J. Org. Chem. 2011, 76, 328.

[52]

K.Nakao, M.Nishimura, T.Tamachi, Y.Kuwatani, H.Miyasaka, T.Nishinaga, M.Iyoda, J. Am. Chem. Soc. 2006, 128, 16740.

[53]

Q.Fan, T.Wang, J.Dai, J. Kuttner, G.Hilt, J. M.Gottfried, J.Zhu, ACS Nano 2017, 11, 5070.

[54]

S.-i.Kawano, M.Kato, S.Soumiya, M. Nakaya, J.Onoe, K.Tanaka, Angew. Chem. Int. Ed. 2018, 57, 167.

[55]

C.Fan, B.Sun, Z.Li, J.Shi, T.Lin, J. Fan, Z.Shi, Angew. Chem. Int. Ed. 2021, 60, 13896.

[56]

R.Jasti, J.Bhattacharjee, J. B.Neaton, C. R.Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646.

[57]

E. G.Sheetz, B.Qiao, M.Pink, A. H. Flood, J. Am. Chem. Soc. 2018, 140, 7773.

[58]

K.Xu, Z.-Y.Zhang, C.Yu, B.Wang, M.Dong, X. Zeng, R.Gou, L.Cui, C.Li, Angew. Chem. Int. Ed. 2020, 59, 7214.

[59]

E. A.Meyer, R. K.Castellano, F.Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210.

[60]

F.Würthner, T. E. Kaiser, C. R.Saha-Möller, Angew. Chem. Int. Ed. 2011, 50, 3376.

[61]

S.Ma, S.Du, G.Pan, S. Dai, B.Xu, W.Tian, Aggregate 2021, 2, e96.

[62]

M.Baroncini, G.Bergamini, P.Ceroni, Chem. Commun. 2017, 53, 2081.

[63]

J.Gong, P.Wei, J.Liu, Y. Chen, Z.Zhao, W.Zhao, H.Xie, C.Ma, J. W. Y. Lam, K. S.Wong, Y.Li, B. Z.Tang, Aggregate 2023, 4, e265.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/