New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications

Jiabao Zheng , Paul Van der Meeren , Weizheng Sun

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 449

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :449 DOI: 10.1002/agt2.449
REVIEW

New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications

Author information +
History +
PDF

Abstract

For more than a decade, the discovery of liquid–liquid phase separation within living organisms has prompted colloid scientists to understand the connection between coacervate functionality, phase behavior, and dynamics at a multidisciplinary level. Although the protein–polysaccharide was the first system in which the coacervation phenomenon was discovered and is widely used in food systems, the phase state and relaxation dynamics of protein–polysaccharide complex coacervates (PPCC) have rarely been discussed previously. Consequently, this review aims to unravel the relationship between PPCC dynamics, thermodynamics, molecular architecture, applications, and phase states in past studies. Looking ahead, solving the way molecular architecture spreads to macro-functionality, that is, establishing the relationship between molecular architecture–dynamics–application, will catalyze novel advancements in PPCC research within the field of foods and biomaterials.

Keywords

dynamics / encapsulation / liquid coacervate / protein–polysaccharide complex coacervation / solid precipitate

Cite this article

Download citation ▾
Jiabao Zheng, Paul Van der Meeren, Weizheng Sun. New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications. Aggregate, 2024, 5(1): 449 DOI:10.1002/agt2.449

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. E. Sing, S. L. Perry, Soft Matter 2020, 16, 2885.

[2]

C. E. Sing, Adv. Colloid Interface Sci. 2017, 239, 2.

[3]

F. W. Tiebackx, Z. Chem. Ind. Kolloide 1911, 8, 198.

[4]

H. G. Bungenberg De Jong, H. R. Kruyt, Proc. K. Ned. Akad. Wet. 1929, 32, 849.

[5]

C. G. de Kruif, F. Weinbreck, R. de Vries, Curr. Opin. Colloid Interface Sci. 2004, 9, 340.

[6]

C. Schmitt, S. L. Turgeon, Adv. Colloid Interface Sci. 2011, 167, 63.

[7]

E. Dickinson, Soft Matter 2008, 4, 932.

[8]

F. Weinbreck, R. de Vries, P. Schrooyen, C. G. de Kruif, Biomacromolecules 2003, 4, 293.

[9]

N. R. Johnson, Y. Wang, Expert Opin. Drug Del. 2014, 11, 1829.

[10]

A. Tiwari, S. Bindal, H. B. Bohidar, Biomacromolecules 2009, 10, 184.

[11]

X. Ding, Y. Wang, J. Mater. Chem. B 2017, 5, 887.

[12]

M. Motornov, Y. Roiter, I. Tokarev, S. Minko, Prog. Polym. Sci. 2010, 35, 174.

[13]

R. J. Stewart, C. S. Wang, H. Shao, Adv. Colloid Interface Sci. 2011, 167, 85.

[14]

H. J. Kim, B. Yang, T. Y. Park, S. Lim, H. J. Cha, Soft Matter 2017, 13, 7704.

[15]

E. Astoricchio, C. Alfano, L. Rajendran, P. A. Temussi, A. Pastore, Trends Biochem. Sci. 2020, 45, 706.

[16]

N. A. Yewdall, A. A. M. André, T. Lu, E. Spruijt, Curr. Opin. Colloid Interface Sci. 2021, 52, 101416.

[17]

M. Abbas, W. P. Lipi’nski, J. Wang, E. Spruijt, Chem. Soc. Rev. 2021, 50, 3690.

[18]

S. L. Turgeon, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 2007, 12, 166.

[19]

J. L. Doublier, C. Garnier, D. Renard, C. Sanchez, Curr. Opin. Colloid Interface Sci. 2000, 5, 202.

[20]

T. Moschakis, C. G. Biliaderis, Curr. Opin. Colloid Interface Sci. 2017, 28, 96.

[21]

M. Semenova, Curr. Opin. Colloid Interface Sci. 2017, 28, 15.

[22]

W. Wijaya, A. R. Patel, A. D. Setiowati, P. Van der Meeren, Trends Food Sci. Tech. 2017, 68, 56.

[23]

L. Gentile, Curr. Opin. Colloid Interface Sci. 2020, 48, 18.

[24]

J. Pathak, E. Priyadarshini, K. Rawat, H. B. Bohidar, Adv. Colloid Interface Sci. 2017, 250, 40.

[25]

N. Eghbal, R. Choudhary, LWT–Food Sci. Technol. 2018, 90, 254.

[26]

Y. P. Timilsena, T. O. Akanbi, N. Khalid, B. Adhikari, C. J. Barrow, Int. J. Biol. Macromol. 2019, 121, 1276.

[27]

A. M. Rumyantsev, N. E. Jackson, J. J. D. Pablo, Annu. Rev. Condens. Matter Phys. 2021, 12, 155.

[28]

J. Huang, F. J. Morin, J. E. Laaser, Macromolecules 2019, 52, 4957.

[29]

C. P. Brangwynne, P. Tompa, R. V. Pappu, Nat. Phys. 2015, 11, 899.

[30]

S. L. Perry, L. Leon, K. Q. Hoffmann, M. J. Kade, D. Priftis, K. A. Black, D. Wong, R. A. Klein, C. F. Pierce, K. O. Margossian, J. K. Whitmer, J. Qin, J. J. de Pablo, M. Tirrell, Nat. Commun. 2015, 6, 6052.

[31]

J. Es Sayed, C. Caïto, A. Arunachalam, A. Amirsadeghi, L. van Westerveld, D. Maret, R. A. Mohamed Yunus, E. Calicchia, O. Dittberner, G. Portale, D. Parisi, M. Kamperman, Macromolecules 2023, 56, 5891.

[32]

A. A. Hyman, C. A. Weber, F. Jülicher, Annu. Rev. Cell Dev. Biol. 2014, 30, 39.

[33]

N. Galvanetto, M. T. Ivanovi’c, A. Chowdhury, A. Sottini, M. F. Nüesch, D. Nettels, R. B. Best, B. Schuler, Nature 2023, 619, 876.

[34]

S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, P. Tompa, M. Fuxreiter, Trends Cell Biol. 2018, 28, 420.

[35]

S. Alberti, A. Gladfelter, T. Mittag, Cell 2019, 176, 419.

[36]

Y. Huang, X. Huang, Langmuir 2023, 39, 8941.

[37]

B. Muhoza, S. Q. Xia, X. M. Zhang, Food Hydrocolloids 2019, 97, 105174.

[38]

J. Zheng, C.-H. Tang, W. Sun, Adv. Colloid Interface Sci. 2020, 284, 102268.

[39]

W. C. Blocher, S. L. Perry, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, 1442.

[40]

E. Spruijt, M. A. Cohen Stuart, J. van der Gucht, Macromolecules 2013, 46, 1633.

[41]

Y. Liu, H. H. Winter, S. L. Perry, Adv. Colloid Interface Sci. 2017, 239, 46.

[42]

D. Dong, Y. Hua, Y. Chen, X. Kong, C. Zhang, Q. Wang, J. Agric. Food Chem. 2013, 61, 3934.

[43]

F. Plati, C. Ritzoulis, E. Pavlidou, A. Paraskevopoulou, Int. J. Biol. Macromol. 2021, 182, 144.

[44]

X. Li, Y. Fang, S. Al-Assaf, G. O. Phillips, X. Yao, Y. Zhang, M. Zhao, K. Zhang, F. Jiang, Langmuir 2012, 28, 10164.

[45]

W. Xiong, C. Ren, W. Jin, J. Tian, Y. Wang, B. R. Shah, J. Li, B. Li, Food Hydrocolloids 2016, 61, 895.

[46]

M. S. M Wee, S. Nurhazwani, K. W. J. Tan, K. K. T. Goh, I. M. Sims, L. Matia-Merino, Food Hydrocolloids 2014, 42, 130.

[47]

J. Liu, J. Chai, T. Zhang, Y. Yuan, R. K. Saini, M. Xu, S. Li, X. Shang, Food Hydrocolloids 2021, 118, 106777.

[48]

B. L. H. M. Sperber, H. A. Schols, M. A. Cohen Stuart, W. Norde, A. G. J. Voragen, Food Hydrocolloids 2009, 23, 765.

[49]

M. A. Razzak, M. Kim, H.-J. Kim, Y.-C. Park, D. Chung, Int. J. Biol. Macromol. 2017, 102, 885.

[50]

M. Tirrell, ACS Cent. Sci. 2018, 4, 532.

[51]

Y. Zhang, P. Batys, J. T. O’Neal, F. Li, M. Sammalkorpi, J. L. Lutkenhaus, ACS Cent. Sci. 2018, 4, 638.

[52]

S. Kim, M. Lee, W. B. Lee, S.-H. Choi, Macromolecules 2021, 54, 7572.

[53]

L. Li, S. Srivastava, M. Andreev, A. B. Marciel, J. J. de Pablo, M. V. Tirrell, Macromolecules 2018, 51, 2988.

[54]

M. Radhakrishna, K. Basu, Y. Liu, R. Shamsi, S. L. Perry, C. E. Sing, Macromolecules 2017, 50, 3030.

[55]

L. Li, A. M. Rumyantsev, S. Srivastava, S. Meng, J. J. de Pablo, M. V. Tirrell, Macromolecules 2021, 54, 105.

[56]

J. Sun, J. D. Schiffman, S. L. Perry, ACS Appl. Polym. Mater. 2022, 4, 1617.

[57]

J. T. G Overbeek, M. J. Voorn, J. Cell. Comp. Physiol. 1957, 49, 7.

[58]

Y. Lan, J.-B. Ohm, B. Chen, J. Rao, Food Hydrocolloids 2020, 101, 105556.

[59]

P. K. Pillai, B. Guldiken, M. T. Nickerson, J. Sci. Food Agric. 2021, 101, 1209.

[60]

Q. Zhang, B. Jeganathan, H. Dong, L. Chen, T. Vasanthan, Food Chem. 2021, 344, 128569.

[61]

Q. Zhang, H. Dong, J. Gao, L. Chen, T. Vasanthan, Carbohydr. Polym. 2020, 250, 116925.

[62]

Q. Z. Zeng, M. F. Li, Z. Z. Li, J. L. Zhang, Q. Wang, S. L. Feng, D. X. Su, S. He, Y. Yuan, LWT–Food Sci. Technol. 2019, 105, 79.

[63]

G. Huang, J. Liu, W. Jin, Z. Wei, C.-T. Ho, S. Zhao, K. Zhang, Q. Huang, Molecules 2019, 24, 3056.

[64]

E. Duhoranimana, J. Yu, O. Mukeshimana, I. Habinshuti, E. Karangwa, X. Xu, B. Muhoza, S. Xia, X. Zhang, Food Hydrocolloids 2018, 80, 149.

[65]

Y. Li, X. Zhang, Y. Zhao, J. Ding, S. Lin, Food Res. Int. 2018, 107, 596.

[66]

W. Xiong, C. Ren, M. Tian, X. Yang, J. Li, B. Li, Food Hydrocolloids 2017, 73, 41.

[67]

E. Ghorbani Gorji, A. Waheed, R. Ludwig, J. L Toca-Herrera, G. Schleining, S. Ghorbani Gorji, J. Agric. Food Chem. 2018, 66, 3210.

[68]

L. P. H Bastos, C. W. P. de Carvalho, E. E Garcia-Rojas, Int. J. Biol. Macromol. 2018, 120, 332.

[69]

S. M. H Hosseini, Z. Emam-Djomeh, S. H. Razavi, A. A. Moosavi-Movahedi, A. A. Saboury, M. A. Mohammadifar, A. Farahnaky, M. S. Atri, P. Van der Meeren, Food Chem. 2013, 141, 215.

[70]

L. Wang, X. Yue, J. Wang, L. Bai, Y. Li, J. Food Biochem. 2019, 43, e13042.

[71]

X. Li, Y. Hua, Y. Chen, X. Kong, C. Zhang, Food Hydrocolloids 2016, 56, 207.

[72]

C. J. F Souza, C. S. F. Souza, L. P. Heckert Bastos, E. E Garcia-Rojas, Int. J. Biol. Macromol. 2018, 109, 467.

[73]

W. Xiong, Y. Li, C. Ren, J. Li, B. Li, F. Geng, Food Hydrocolloids 2021, 120, 106958.

[74]

X. Du, P. L. Dubin, D. A. Hoagland, L. Sun, Biomacromolecules 2014, 15, 726.

[75]

M.-F. Li, L. Chen, M.-Z. Xu, J.-L. Zhang, Q. Wang, Q.-Z. Zeng, X.-C. Wei, Y. Yuan, Int. J. Biol. Macromol. 2018, 116, 1232.

[76]

L. Maldonado, S. Chough, J. Bonilla, K. H. Kim, J. Kokini, Food Hydrocolloids 2019, 93, 293.

[77]

L. Aberkane, J. Jasniewski, C. Gaiani, J. Scher, C. Sanchez, Langmuir 2010, 26, 12523.

[78]

M. Mousazadeh, M. Mousavi, G. Askari, H. Kiani, I. Adt, A. Gharsallaoui, Int. J. Biol. Macromol. 2018, 119, 1052.

[79]

M. Girard, S. L. Turgeon, S. F. Gauthier, J. Agric. Food Chem. 2003, 51, 4450.

[80]

A. Y. Xu, L. D. Melton, G. B. Jameson, M. A. K. Williams, D. J. McGillivray, Soft Matter 2015, 11, 6790.

[81]

Y. Liu, C. F. Santa Chalarca, R. N. Carmean, R. A. Olson, J. Madinya, B. S. Sumerlin, C. E. Sing, T. Emrick, S. L. Perry, Macromolecules 2020, 53, 7851.

[82]

E. Spruijt, J. Sprakel, M. Lemmers, M. A. C. Stuart, J. van der Gucht, Phys. Rev. Lett. 2010, 105, 208301.

[83]

D. S. Bastos, B. N. Barreto, H. K. S. Souza, M. Bastos, M. H. M. Rocha-Leão, C. T. Andrade, M. P. Gonçalves, Food Hydrocolloids 2010, 24, 709.

[84]

J. Liu, Y. Y. Shim, J. Shen, Y. Wang, M. J. T. Reaney, Food Hydrocolloids 2017, 64, 18.

[85]

F. Weinbreck, R. H. W. Wientjes, H. Nieuwenhuijse, G. W. Robijn, C. G. D. Kruif, J. Rheol. 2004, 48, 1215.

[86]

A. K. Stone, A. Teymurova, M. T. Nickerson, Food Biophys. 2014, 9, 203.

[87]

I. Bos, E. Brink, L. Michels, J. Sprakel, Soft Matter 2022, 18, 2012.

[88]

X. Wang, J. Lee, Y.-W. Wang, Q. Huang, Biomacromolecules 2007, 8, 992.

[89]

M. Raei, A. Rafe, F. Shahidi, J. Food Eng. 2018, 228, 25.

[90]

C. J. F Souza, E. E Garcia-Rojas, Food Hydrocoll. 2017, 66, 268.

[91]

L. M. B Yoshihara, E. P. G. Arêas, Biophys. Chem. 2018, 236, 8.

[92]

C. M. R Rocha, H. K. S. Souza, N. F. Magalhães, C. T. Andrade, M. P. Gonçalves, Carbohydr. Polym. 2014, 110, 345.

[93]

X. Cui, F. Yu, Y. Xue, T. Zhang, L. Ji, Y. Wang, C. Xue, J. Food Sci. 2018, 83, 2176.

[94]

C. Chai, J. Lee, Q. Huang, LWT–Food Sci. Technol. 2014, 59, 356.

[95]

S. Boral, H. B. Bohidar, J. Phys. Chem. B 2010, 114, 12027.

[96]

S. Ghorbani Gorji, E. Ghorbani Gorji, M. A. Mohammadifar, A. Zargaraan, Int. J. Biol. Macromol. 2014, 67, 503.

[97]

L. Wang, Y. Cao, K. Zhang, Y. Fang, K. Nishinari, G. O. Phillips, Colloid Surf. A 2015, 482, 604.

[98]

S. Ali, V. M. Prabhu, Gels 2018, 4, 11.

[99]

E. Kizilay, D. Seeman, Y. Yan, X. Du, P. L. Dubin, L. Donato-Capel, L. Bovetto, C. Schmitt, Soft Matter 2014, 10, 7262.

[100]

Y. L. Liu, B. Momani, H. H. Winter, S. L. Perry, Soft Matter 2017, 13, 7332.

[101]

H. Bohidar, P. L. Dubin, P. R. Majhi, C. Tribet, W. Jaeger, Biomacromolecules 2005, 6, 1573.

[102]

M. Tekaat, D. Bütergerds, M. Schönhoff, A. Fery, C. Cramer, Phys. Chem. Chem. Phys. 2015, 17, 22552.

[103]

S. M. Lalwani, P. Batys, M. Sammalkorpi, J. L. Lutkenhaus, Macromolecules 2021, 54, 7765.

[104]

S. Manoj Lalwani, C. I. Eneh, J. L. Lutkenhaus, Phys. Chem. Chem. Phys. 2020, 22, 24157.

[105]

S. Lindhoud, M. A. C. Stuart, Polyelectrolyte Complexes in the Dispersed and Solid State I: Principles and Theory (Ed: M. Müller), Springer Berlin Heidelberg, Berlin, Heidelberg 2014, p.139. https://doi.org/10.1007/12_2012_178

[106]

F. Weinbreck, H. S. Rollema, R. H. Tromp, C. G. De Kruif, Langmuir 2004, 20, 6389.

[107]

P. D. S Peixoto, G. M. Tavares, T. Croguennec, A. Nicolas, P. Hamon, C. Roiland, S. Bouhallab, Langmuir 2016, 32, 7821.

[108]

A. B. Kayitmazer, H. B. Bohidar, K. W. Mattison, A. Bose, J. Sarkar, A. Hashidzume, P. S. Russo, W. Jaeger, P. L. Dubin, Soft Matter 2007, 3, 1064.

[109]

M. Leslie, Science 2021, 371, 336.

[110]

A. Nolles, E. Hooiveld, A. H. Westphal, W. J. H. van Berkel, J. M. Kleijn, J. W. Borst, Langmuir 2018, 34, 12083.

[111]

R. Kaup, A. H. Velders, ACS Nano 2022, 16, 14611.

[112]

I. Bos, M. Timmerman, J. Sprakel, Macromolecules 2021, 54, 398.

[113]

X. Li, Y. Hua, Y. Chen, X. Kong, C. Zhang, J. Agric. Food Chem. 2016, 64, 9054.

[114]

A. K. Stone, M. T. Nickerson, Food Hydrocolloids 2012, 27, 271.

[115]

Y. A. Antonov, I. L. Zhuravleva, M. Celus, C. Kyomugasho, S. Lombardo, W. Thielemans, M. Hendrickx, P. Moldenaers, R. Cardinaels, Food Hydrocolloids 2020, 99, 105345.

[116]

W. Jin, Z. Wang, D. Peng, W. Shen, Z. Zhu, S. Cheng, B. Li, Q. Huang, Food Chem. 2020, 331, 127320.

[117]

X. Wang, Y. Li, Y.-W. Wang, J. Lal, Q. Huang, J. Phys. Chem. B 2007, 111, 515.

[118]

W. F. Xiong, C. Ren, J. Li, B. Li, Food Hydrocolloids 2018, 82, 355.

[119]

K. C. Biplab, T. Nii, T. Mori, Y. Katayama, K. Akihiro, Chem. Sci. 2023, 14, 6608.

[120]

J. Li, W. Jin, W. Xu, G. Liu, Q. Huang, Z. Zhu, S. Li, S. Cheng, Int. J. Biol. Macromol. 2020, 154, 1245.

[121]

Y. A. Antonov, M. Celus, C. Kyomugasho, M. Hendrickx, P. Moldenaers, R. Cardinaels, Food Hydrocolloids 2019, 94, 268.

[122]

D. P. Seeman, J. Phys. Chem. Lett. 2015, 3, 731.

[123]

Y. Xu, M. Mazzawi, K. Chen, L. Sun, P. L. Dubin, Biomacromolecules 2011, 12, 1512.

[124]

R. A. Kapelner, A. C. Obermeyer, Chem. Sci. 2019, 10, 2700.

[125]

S. Kim, H. V. Sureka, A. B. Kayitmazer, G. Wang, J. W. Swan, B. D. Olsen, Biomacromolecules 2020, 21, 3026.

[126]

W. C. Blocher McTigue, S. L. Perry, Soft Matter 2019, 15, 3089.

[127]

H. K. S Souza, M. D. P. Gonçalves, J. Gómez, Biomacromolecules 2011, 12, 1015.

[128]

D. Priftis, M. Tirrell, Soft Matter 2012, 8, 9396.

[129]

A. B. Kayitmazer, A. F. Koksal, E. Kilic Iyilik, Soft Matter 2015, 11, 8605.

[130]

S. Jeong, B. Kim, H.-C. Lau, A. Kim, Pharmaceutics 2019, 11, 530.

[131]

C. L. Cooper, P. L. Dubin, A. B. Kayitmazer, S. Turksen, Curr. Opin. Colloid Interface Sci. 2005, 10, 52.

[132]

D. Takahashi, Y. Kubota, K. Kokai, T. Izumi, M. Hirata, E. Kokufuta, Langmuir 2000, 16, 3133.

[133]

M. Skepö, P. Linse, Macromolecules 2003, 36, 508.

[134]

M. Jonsson, P. Linse, J. Chem. Phys. 2001, 115, 10975.

[135]

T. Wallin, P. Linse, Langmuir 1996, 12, 305.

[136]

S. Stoll, P. Chodanowski, Macromolecules 2002, 35, 9556.

[137]

W. C. Blocher McTigue, S. L. Perry, Small 2020, 16, 1907671.

[138]

P. S. Roy, A. Samanta, M. Mukherjee, B. Roy, A. Mukherjee, Ind. Eng. Chem. Res. 2013, 52, 15728.

[139]

S. Lindhoud, M. M. A. E. Claessens, Soft Matter 2016, 12, 408.

[140]

J. van Lente, M. Pazos Urrea, T. Brouwer, B. Schuur, S. Lindhoud, Green Chem. 2021, 23, 5812.

[141]

C. J. F Souza, E. E Garcia-Rojas, C. S. Favaro-Trindade, Food Hydrocolloids 2018, 83, 88.

[142]

C. J. F Souza, E. E Garcia-Rojas, C. S. F. Souza, L. C. Vriesmann, J. Vicente, M. G. de Carvalho, C. L. O. Petkowicz, C. S Favaro-Trindade, Int. J. Biol. Macromol. 2019, 122, 594.

[143]

K. A. Black, D. Priftis, S. L. Perry, J. Yip, W. Y. Byun, M. Tirrell, ACS Macro Lett. 2014, 3, 1088.

[144]

S. Kübelbeck, J. Mikhael, S. Schoof, A. Andrieu-Brunsen, G. Baier, J. Appl. Polym. Sci. 2017, 134, 45036.

[145]

J. Zheng, Q. Gao, G. Ge, W. Sun, P. Van der Meeren, M. Zhao, Food Hydrocolloids 2022, 133, 107964.

[146]

L. K. Mao, Q. Y. Pan, F. Yuan, Y. X. Gao, Food Chem. 2019, 276, 307.

[147]

L. A. Bosnea, T. Moschakis, C. G. Biliaderis, Food Bioprocess Technol. 2014, 7, 2767.

[148]

L. A. Bosnea, T. Moschakis, P. S. Nigam, C. G. Biliaderis, LWT–Food Sci. Technol. 2017, 77, 282.

[149]

T. Marques da Silva, E. Jacob Lopes, C. F. Codevilla, A. J. Cichoski, É. M. D. M. Flores, M. H. Motta, C. D. B. da Silva, C. R. F. Grosso, C. R. de Menezes, LWT–Food Sci. Technol. 2018, 90, 412.

[150]

H. Lenormand, F. Amar-Bacoup, J.-C. Vincent, Biophys. Chem. 2013, 175-176, 63.

[151]

H. Lenormand, B. Deschrevel, F. Tranchepain, J.-C. Vincent, Biopolymers 2008, 89, 1088.

[152]

N. Woitovich Valetti, M. E. Brassesco, G. A. Picó, J. Chem. Technol. Biotechnol. 2016, 91, 2921.

[153]

S. Yang, X. Li, Y. Hua, Y. Chen, X. Kong, C. Zhang, J. Agric. Food Chem. 2020, 68, 1698.

[154]

B. Zeeb, M. Yavuz-Duzgun, J. Dreher, J. Evert, T. Stressler, L. Fischer, B. Ozcelik, J. Weiss, Food Funct. 2018, 9, 2261.

[155]

S. Jeong, B. Kim, M. Park, E. Ban, S.-H. Lee, A. Kim, Pharmaceutics 2020, 12, 334.

[156]

M. G. Sankalia, R. C. Mashru, J. M. Sankalia, V. B. Sutariya, Eur. J. Pharm. Biopharm. 2007, 65, 215.

[157]

B. K. Green, S. Lowell, (NCR Corp) US 1956.

[158]

B. K. Green, S. Lowell, (NCR Corp) US 1957.

[159]

M. Li, R. Mirshafian, J. Wang, H. Mohanram, K. A. Ahn, S. Hosseinzadeh, K. V. Pervushin, J. H. Waite, J. Yu, Biomacromolecules 2023, 24, 4190.

[160]

M. B. Santos, M. Geraldo de Carvalho, E. E Garcia-Rojas, Food Hydrocolloids 2021, 112, 106347.

[161]

M. S. M Meiguni, M. Salami, K. Rezaei, M. A. Aliyari, S.-B. Ghaffari, Z. Emam-Djomeh, J. F. Kennedy, A. Ghasemi, Int. J. Biol. Macromol. 2023, 224, 170.

[162]

L. Maldonado, R. Sadeghi, J. Kokini, Colloid Surf. B 2017, 159, 759.

[163]

M. S. Mirmohammad Meiguni, M. Salami, K. Rezaei, S.-B. Ghaffari, M. A. Aliyari, Z. Emam-Djomeh, Y. Barazandegan, I. Gruen, J. Food Sci. 2022, 87, 4930.

[164]

Y. Lan, L. Wang, S. Cao, Y. Zhong, Y. Li, Y. Cao, L. Zhao, Food Funct. 2017, 8, 4070.

[165]

L. Tavares, C. P. Zapata Noreña, Food Hydrocolloids 2019, 89, 360.

[166]

V. B. de Souza, M. Thomazini, M. A. Echalar Barrientos, C. M. Nalin, R. Ferro-Furtado, M. I. Genovese, C. S Favaro-Trindade, Food Hydrocolloids 2018, 77, 297.

[167]

F. Comert, P. L. Dubin, Adv. Colloid Interface Sci. 2017, 239, 213.

[168]

K. O. Margossian, M. U. Brown, T. Emrick, M. Muthukumar, Nat. Commun. 2022, 13, 2250.

[169]

J. Liu, S. L. Perry, B. Z. Tang, M. V. Tirrell, Matter 2022, 5, 3107.

[170]

A. Yüksel, N. Şahin-Ye¸silçubuk, J. Food Process Eng. 2018, 41, e12907.

[171]

J. D Rios-Mera, E. Saldaña, Y. Ramírez, E. A. Auquiñivín, I. D. Alvim, C. J Contreras-Castillo, LWT–Food Sci. Technol. 2019, 116, 108555.

[172]

W. R. Glomm, P. P. Molesworth, B. Yesiltas, C. Jacobsen, H. Johnsen, Food Hydrocolloids 2023, 140, 108598.

[173]

D. Eratte, S. McKnight, T. R. Gengenbach, K. Dowling, C. J. Barrow, B. P. Adhikari, J. Funct. Foods 2015, 19, 882.

[174]

F. Plati, A. Paraskevopoulou, Food Hydrocolloids 2023, 136, 108284.

[175]

R. Hernández-Nava, A. López-Malo, E. Palou, N. Ramírez-Corona, M. T. Jiménez-Munguía, Food Hydrocolloids 2020, 109, 106077.

[176]

L. Hernández-Rodríguez, C. Lobato-Calleros, D. J. Pimentel-González, E. J Vernon-Carter, Food Hydrocolloids 2014, 36, 181.

[177]

X. Qi, Y. Lan, J.-B. Ohm, B. Chen, J. Rao, Food Funct. 2021, 12, 8907.

[178]

M. Zhao, Y. Wang, X. Huang, M. Gaenzle, Z. Wu, K. Nishinari, N. Yang, Y. Fang, Food Funct. 2018, 9, 1000.

[179]

M. Zhao, X. Huang, H. Zhang, Y. Zhang, M. Gänzle, N. Yang, K. Nishinari, Y. Fang, Food Hydrocolloids 2020, 105, 105790.

[180]

L. A. Bosnea, T. Moschakis, C. G. Biliaderis, Food Funct. 2017, 8, 554.

[181]

T. M. da Silva, C. de Deus, B. de Souza Fonseca, E. J. Lopes, A. J. Cichoski, E. A. Esmerino, C. de Bona da Silva, E. I. Muller, E. M. Moraes Flores, C. R. de Menezes, Food Res. Int. 2019, 125, 108577.

[182]

T. Marques da Silva, V. Sonza Pinto, V. Ramires Fonseca Soares, D. Marotz, A. J. Cichoski, L. Queiroz Zepka, E. Jacob Lopes, C. de Bona da Silva, C. R. de Menezes, Food Res. Int. 2021, 141, 110190.

[183]

M. Dompé, F. J Cedano-Serrano, O. Heckert, N. van da Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, M. Kamperman, Adv. Mater. 2019, 31, 1808179.

[184]

M. Dompé, F. J Cedano-Serrano, M. Vahdati, L. van Westerveld, D. Hourdet, C. Creton, J. van der Gucht, T. Kodger, M. Kamperman, Adv. Mater. Interfaces 2020, 7, 1901785.

[185]

E. Ewaldz, B. Brettmann, ACS Appl. Polym. Mater. 2019, 1, 298.

[186]

X. Meng, S. L. Perry, J. D. Schiffman, ACS Macro Lett. 2017, 6, 505.

[187]

X. Meng, J. D. Schiffman, S. L. Perry, Macromolecules 2018, 51, 8821.

[188]

J. Sun, S. L. Perry, J. D. Schiffman, Biomacromolecules 2019, 20, 4191.

[189]

X. Meng, Y. Du, Y. Liu, E. B. Coughlin, S. L. Perry, J. D. Schiffman, Macromolecules 2021, 54, 5033.

[190]

M. Khoonkari, J. E. Sayed, M. Oggioni, A. Amirsadeghi, P. Dijkstra, D. Parisi, F. Kruyt, P. van Rijn, M. K. Włodarczyk-Biegun, M. Kamperman, Adv. Mater. 2023, 35, 2210769.

[191]

L. Wang, L. Duan, G. Liu, J. Sun, M.-A. Shahbazi, S. C. Kundu, R. L. Reis, B. Xiao, X. Yang, Adv. Sci. 10, 2207352.

[192]

I. S. Kurtz, S. Sui, X. Hao, M. Huang, S. L. Perry, J. D. Schiffman, ACS Appl. Bio Mater. 2019, 2, 3926.

[193]

S.-W. Maeng, J.-Y. Ko, T. Y. Park, J. Yun, S. H. Park, S. J. Han, K. I. Joo, S. Ha, M. Jee, G.-I. Im, H. J. Cha, Chem. Eng. J. 2023, 463, 142379.

[194]

B. Kim, E. Ban, A. Kim, Pharmaceutics 2021, 13, 2112.

[195]

X. Zhao, L. Wang, J. Gao, X. Chen, K. Wang, Biomater. Sci. 2020, 8, 1702.

[196]

H. Li, Y. Shi, W. Zhang, M. Yu, X. Chen, M. Kong, ACS Appl. Mater. Interfaces 2022, 14, 18097.

[197]

L. Tavares, H. K. S. Souza, M. P. Gonçalves, C. M. R. Rocha, Food Hydrocolloids 2021, 113, 106471.

[198]

H. Hashemi Gahruie, A. Mirzapour, F. Ghiasi, M. H. Eskandari, M. Moosavi-Nasab, S. M. H. Hosseini, LWT–Food Sci. Technol. 2022, 153, 112422.

[199]

L. R. Amado, K. D. S. Silva, M. A. Mauro, J. Appl. Polym. Sci. 2020, 137, 48732.

[200]

S. Esteghlal, M. Niakousari, S. M. H. Hosseini, Int. J. Biol. Macromol. 2018, 114, 1.

[201]

N. Eghbal, M. S. Yarmand, M. Mousavi, P. Degraeve, N. Oulahal, A. Gharsallaoui, Carbohydr. Polym. 2016, 151, 947.

[202]

M. Jahromi, M. Niakousari, M. T. Golmakani, M. A. Mohammadifar, Int. J. Biol. Macromol. 2020, 165, 1949.

[203]

K. G. Nikolaev, S. A. Ulasevich, O. Luneva, O. Y. Orlova, D. Vasileva, S. Vasilev, A. S. Novikov, E. V. Skorb, ACS Appl. Polym. Mater. 2020, 2, 105.

[204]

M. Haile, O. Sarwar, R. Henderson, R. Smith, J. C. Grunlan, Macromol. Rapid Commun. 2017, 38, 1600594.

[205]

K. D. Kelly, J. B. Schlenoff, ACS Appl. Mater. Interfaces 2015, 7, 13980.

[206]

S. Gao, S. Srivastava, ACS Macro Lett. 2022, 11, 902.

[207]

Y. Ji, Y. Lin, Y. Qiao, J. Am. Chem. Soc. 2023, 145, 12576.

[208]

C. Zhao, J. Li, S. Wang, Z. Xu, X. Wang, X. Liu, L. Wang, X. Huang, ACS Nano 2021, 15, 10048.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/