New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications

Jiabao Zheng, Paul Van der Meeren, Weizheng Sun

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 449. DOI: 10.1002/agt2.449
REVIEW

New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications

Author information +
History +

Abstract

For more than a decade, the discovery of liquid–liquid phase separation within living organisms has prompted colloid scientists to understand the connection between coacervate functionality, phase behavior, and dynamics at a multidisciplinary level. Although the protein–polysaccharide was the first system in which the coacervation phenomenon was discovered and is widely used in food systems, the phase state and relaxation dynamics of protein–polysaccharide complex coacervates (PPCC) have rarely been discussed previously. Consequently, this review aims to unravel the relationship between PPCC dynamics, thermodynamics, molecular architecture, applications, and phase states in past studies. Looking ahead, solving the way molecular architecture spreads to macro-functionality, that is, establishing the relationship between molecular architecture–dynamics–application, will catalyze novel advancements in PPCC research within the field of foods and biomaterials.

Keywords

dynamics / encapsulation / liquid coacervate / protein–polysaccharide complex coacervation / solid precipitate

Cite this article

Download citation ▾
Jiabao Zheng, Paul Van der Meeren, Weizheng Sun. New insights into protein–polysaccharide complex coacervation: Dynamics, molecular parameters, and applications. Aggregate, 2024, 5(1): 449 https://doi.org/10.1002/agt2.449

References

[1]
C. E. Sing, S. L. Perry, Soft Matter 2020, 16, 2885.
CrossRef Google scholar
[2]
C. E. Sing, Adv. Colloid Interface Sci. 2017, 239, 2.
CrossRef Google scholar
[3]
F. W. Tiebackx, Z. Chem. Ind. Kolloide 1911, 8, 198.
CrossRef Google scholar
[4]
H. G. Bungenberg De Jong, H. R. Kruyt, Proc. K. Ned. Akad. Wet. 1929, 32, 849.
[5]
C. G. de Kruif, F. Weinbreck, R. de Vries, Curr. Opin. Colloid Interface Sci. 2004, 9, 340.
CrossRef Google scholar
[6]
C. Schmitt, S. L. Turgeon, Adv. Colloid Interface Sci. 2011, 167, 63.
CrossRef Google scholar
[7]
E. Dickinson, Soft Matter 2008, 4, 932.
CrossRef Google scholar
[8]
F. Weinbreck, R. de Vries, P. Schrooyen, C. G. de Kruif, Biomacromolecules 2003, 4, 293.
CrossRef Google scholar
[9]
N. R. Johnson, Y. Wang, Expert Opin. Drug Del. 2014, 11, 1829.
CrossRef Google scholar
[10]
A. Tiwari, S. Bindal, H. B. Bohidar, Biomacromolecules 2009, 10, 184.
CrossRef Google scholar
[11]
X. Ding, Y. Wang, J. Mater. Chem. B 2017, 5, 887.
CrossRef Google scholar
[12]
M. Motornov, Y. Roiter, I. Tokarev, S. Minko, Prog. Polym. Sci. 2010, 35, 174.
CrossRef Google scholar
[13]
R. J. Stewart, C. S. Wang, H. Shao, Adv. Colloid Interface Sci. 2011, 167, 85.
CrossRef Google scholar
[14]
H. J. Kim, B. Yang, T. Y. Park, S. Lim, H. J. Cha, Soft Matter 2017, 13, 7704.
CrossRef Google scholar
[15]
E. Astoricchio, C. Alfano, L. Rajendran, P. A. Temussi, A. Pastore, Trends Biochem. Sci. 2020, 45, 706.
CrossRef Google scholar
[16]
N. A. Yewdall, A. A. M. André, T. Lu, E. Spruijt, Curr. Opin. Colloid Interface Sci. 2021, 52, 101416.
CrossRef Google scholar
[17]
M. Abbas, W. P. Lipi’nski, J. Wang, E. Spruijt, Chem. Soc. Rev. 2021, 50, 3690.
CrossRef Google scholar
[18]
S. L. Turgeon, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 2007, 12, 166.
CrossRef Google scholar
[19]
J. L. Doublier, C. Garnier, D. Renard, C. Sanchez, Curr. Opin. Colloid Interface Sci. 2000, 5, 202.
CrossRef Google scholar
[20]
T. Moschakis, C. G. Biliaderis, Curr. Opin. Colloid Interface Sci. 2017, 28, 96.
CrossRef Google scholar
[21]
M. Semenova, Curr. Opin. Colloid Interface Sci. 2017, 28, 15.
[22]
W. Wijaya, A. R. Patel, A. D. Setiowati, P. Van der Meeren, Trends Food Sci. Tech. 2017, 68, 56.
CrossRef Google scholar
[23]
L. Gentile, Curr. Opin. Colloid Interface Sci. 2020, 48, 18.
CrossRef Google scholar
[24]
J. Pathak, E. Priyadarshini, K. Rawat, H. B. Bohidar, Adv. Colloid Interface Sci. 2017, 250, 40.
CrossRef Google scholar
[25]
N. Eghbal, R. Choudhary, LWT–Food Sci. Technol. 2018, 90, 254.
CrossRef Google scholar
[26]
Y. P. Timilsena, T. O. Akanbi, N. Khalid, B. Adhikari, C. J. Barrow, Int. J. Biol. Macromol. 2019, 121, 1276.
CrossRef Google scholar
[27]
A. M. Rumyantsev, N. E. Jackson, J. J. D. Pablo, Annu. Rev. Condens. Matter Phys. 2021, 12, 155.
CrossRef Google scholar
[28]
J. Huang, F. J. Morin, J. E. Laaser, Macromolecules 2019, 52, 4957.
CrossRef Google scholar
[29]
C. P. Brangwynne, P. Tompa, R. V. Pappu, Nat. Phys. 2015, 11, 899.
CrossRef Google scholar
[30]
S. L. Perry, L. Leon, K. Q. Hoffmann, M. J. Kade, D. Priftis, K. A. Black, D. Wong, R. A. Klein, C. F. Pierce, K. O. Margossian, J. K. Whitmer, J. Qin, J. J. de Pablo, M. Tirrell, Nat. Commun. 2015, 6, 6052.
[31]
J. Es Sayed, C. Caïto, A. Arunachalam, A. Amirsadeghi, L. van Westerveld, D. Maret, R. A. Mohamed Yunus, E. Calicchia, O. Dittberner, G. Portale, D. Parisi, M. Kamperman, Macromolecules 2023, 56, 5891.
CrossRef Google scholar
[32]
A. A. Hyman, C. A. Weber, F. Jülicher, Annu. Rev. Cell Dev. Biol. 2014, 30, 39.
CrossRef Google scholar
[33]
N. Galvanetto, M. T. Ivanovi’c, A. Chowdhury, A. Sottini, M. F. Nüesch, D. Nettels, R. B. Best, B. Schuler, Nature 2023, 619, 876.
CrossRef Google scholar
[34]
S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, P. Tompa, M. Fuxreiter, Trends Cell Biol. 2018, 28, 420.
CrossRef Google scholar
[35]
S. Alberti, A. Gladfelter, T. Mittag, Cell 2019, 176, 419.
CrossRef Google scholar
[36]
Y. Huang, X. Huang, Langmuir 2023, 39, 8941.
CrossRef Google scholar
[37]
B. Muhoza, S. Q. Xia, X. M. Zhang, Food Hydrocolloids 2019, 97, 105174.
CrossRef Google scholar
[38]
J. Zheng, C.-H. Tang, W. Sun, Adv. Colloid Interface Sci. 2020, 284, 102268.
CrossRef Google scholar
[39]
W. C. Blocher, S. L. Perry, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, 1442.
[40]
E. Spruijt, M. A. Cohen Stuart, J. van der Gucht, Macromolecules 2013, 46, 1633.
CrossRef Google scholar
[41]
Y. Liu, H. H. Winter, S. L. Perry, Adv. Colloid Interface Sci. 2017, 239, 46.
CrossRef Google scholar
[42]
D. Dong, Y. Hua, Y. Chen, X. Kong, C. Zhang, Q. Wang, J. Agric. Food Chem. 2013, 61, 3934.
CrossRef Google scholar
[43]
F. Plati, C. Ritzoulis, E. Pavlidou, A. Paraskevopoulou, Int. J. Biol. Macromol. 2021, 182, 144.
CrossRef Google scholar
[44]
X. Li, Y. Fang, S. Al-Assaf, G. O. Phillips, X. Yao, Y. Zhang, M. Zhao, K. Zhang, F. Jiang, Langmuir 2012, 28, 10164.
CrossRef Google scholar
[45]
W. Xiong, C. Ren, W. Jin, J. Tian, Y. Wang, B. R. Shah, J. Li, B. Li, Food Hydrocolloids 2016, 61, 895.
CrossRef Google scholar
[46]
M. S. M Wee, S. Nurhazwani, K. W. J. Tan, K. K. T. Goh, I. M. Sims, L. Matia-Merino, Food Hydrocolloids 2014, 42, 130.
CrossRef Google scholar
[47]
J. Liu, J. Chai, T. Zhang, Y. Yuan, R. K. Saini, M. Xu, S. Li, X. Shang, Food Hydrocolloids 2021, 118, 106777.
CrossRef Google scholar
[48]
B. L. H. M. Sperber, H. A. Schols, M. A. Cohen Stuart, W. Norde, A. G. J. Voragen, Food Hydrocolloids 2009, 23, 765.
CrossRef Google scholar
[49]
M. A. Razzak, M. Kim, H.-J. Kim, Y.-C. Park, D. Chung, Int. J. Biol. Macromol. 2017, 102, 885.
CrossRef Google scholar
[50]
M. Tirrell, ACS Cent. Sci. 2018, 4, 532.
CrossRef Google scholar
[51]
Y. Zhang, P. Batys, J. T. O’Neal, F. Li, M. Sammalkorpi, J. L. Lutkenhaus, ACS Cent. Sci. 2018, 4, 638.
CrossRef Google scholar
[52]
S. Kim, M. Lee, W. B. Lee, S.-H. Choi, Macromolecules 2021, 54, 7572.
CrossRef Google scholar
[53]
L. Li, S. Srivastava, M. Andreev, A. B. Marciel, J. J. de Pablo, M. V. Tirrell, Macromolecules 2018, 51, 2988.
CrossRef Google scholar
[54]
M. Radhakrishna, K. Basu, Y. Liu, R. Shamsi, S. L. Perry, C. E. Sing, Macromolecules 2017, 50, 3030.
CrossRef Google scholar
[55]
L. Li, A. M. Rumyantsev, S. Srivastava, S. Meng, J. J. de Pablo, M. V. Tirrell, Macromolecules 2021, 54, 105.
CrossRef Google scholar
[56]
J. Sun, J. D. Schiffman, S. L. Perry, ACS Appl. Polym. Mater. 2022, 4, 1617.
CrossRef Google scholar
[57]
J. T. G Overbeek, M. J. Voorn, J. Cell. Comp. Physiol. 1957, 49, 7.
CrossRef Google scholar
[58]
Y. Lan, J.-B. Ohm, B. Chen, J. Rao, Food Hydrocolloids 2020, 101, 105556.
CrossRef Google scholar
[59]
P. K. Pillai, B. Guldiken, M. T. Nickerson, J. Sci. Food Agric. 2021, 101, 1209.
CrossRef Google scholar
[60]
Q. Zhang, B. Jeganathan, H. Dong, L. Chen, T. Vasanthan, Food Chem. 2021, 344, 128569.
CrossRef Google scholar
[61]
Q. Zhang, H. Dong, J. Gao, L. Chen, T. Vasanthan, Carbohydr. Polym. 2020, 250, 116925.
CrossRef Google scholar
[62]
Q. Z. Zeng, M. F. Li, Z. Z. Li, J. L. Zhang, Q. Wang, S. L. Feng, D. X. Su, S. He, Y. Yuan, LWT–Food Sci. Technol. 2019, 105, 79.
CrossRef Google scholar
[63]
G. Huang, J. Liu, W. Jin, Z. Wei, C.-T. Ho, S. Zhao, K. Zhang, Q. Huang, Molecules 2019, 24, 3056.
CrossRef Google scholar
[64]
E. Duhoranimana, J. Yu, O. Mukeshimana, I. Habinshuti, E. Karangwa, X. Xu, B. Muhoza, S. Xia, X. Zhang, Food Hydrocolloids 2018, 80, 149.
CrossRef Google scholar
[65]
Y. Li, X. Zhang, Y. Zhao, J. Ding, S. Lin, Food Res. Int. 2018, 107, 596.
CrossRef Google scholar
[66]
W. Xiong, C. Ren, M. Tian, X. Yang, J. Li, B. Li, Food Hydrocolloids 2017, 73, 41.
CrossRef Google scholar
[67]
E. Ghorbani Gorji, A. Waheed, R. Ludwig, J. L Toca-Herrera, G. Schleining, S. Ghorbani Gorji, J. Agric. Food Chem. 2018, 66, 3210.
CrossRef Google scholar
[68]
L. P. H Bastos, C. W. P. de Carvalho, E. E Garcia-Rojas, Int. J. Biol. Macromol. 2018, 120, 332.
CrossRef Google scholar
[69]
S. M. H Hosseini, Z. Emam-Djomeh, S. H. Razavi, A. A. Moosavi-Movahedi, A. A. Saboury, M. A. Mohammadifar, A. Farahnaky, M. S. Atri, P. Van der Meeren, Food Chem. 2013, 141, 215.
CrossRef Google scholar
[70]
L. Wang, X. Yue, J. Wang, L. Bai, Y. Li, J. Food Biochem. 2019, 43, e13042.
[71]
X. Li, Y. Hua, Y. Chen, X. Kong, C. Zhang, Food Hydrocolloids 2016, 56, 207.
CrossRef Google scholar
[72]
C. J. F Souza, C. S. F. Souza, L. P. Heckert Bastos, E. E Garcia-Rojas, Int. J. Biol. Macromol. 2018, 109, 467.
CrossRef Google scholar
[73]
W. Xiong, Y. Li, C. Ren, J. Li, B. Li, F. Geng, Food Hydrocolloids 2021, 120, 106958.
CrossRef Google scholar
[74]
X. Du, P. L. Dubin, D. A. Hoagland, L. Sun, Biomacromolecules 2014, 15, 726.
CrossRef Google scholar
[75]
M.-F. Li, L. Chen, M.-Z. Xu, J.-L. Zhang, Q. Wang, Q.-Z. Zeng, X.-C. Wei, Y. Yuan, Int. J. Biol. Macromol. 2018, 116, 1232.
CrossRef Google scholar
[76]
L. Maldonado, S. Chough, J. Bonilla, K. H. Kim, J. Kokini, Food Hydrocolloids 2019, 93, 293.
CrossRef Google scholar
[77]
L. Aberkane, J. Jasniewski, C. Gaiani, J. Scher, C. Sanchez, Langmuir 2010, 26, 12523.
CrossRef Google scholar
[78]
M. Mousazadeh, M. Mousavi, G. Askari, H. Kiani, I. Adt, A. Gharsallaoui, Int. J. Biol. Macromol. 2018, 119, 1052.
CrossRef Google scholar
[79]
M. Girard, S. L. Turgeon, S. F. Gauthier, J. Agric. Food Chem. 2003, 51, 4450.
CrossRef Google scholar
[80]
A. Y. Xu, L. D. Melton, G. B. Jameson, M. A. K. Williams, D. J. McGillivray, Soft Matter 2015, 11, 6790.
CrossRef Google scholar
[81]
Y. Liu, C. F. Santa Chalarca, R. N. Carmean, R. A. Olson, J. Madinya, B. S. Sumerlin, C. E. Sing, T. Emrick, S. L. Perry, Macromolecules 2020, 53, 7851.
CrossRef Google scholar
[82]
E. Spruijt, J. Sprakel, M. Lemmers, M. A. C. Stuart, J. van der Gucht, Phys. Rev. Lett. 2010, 105, 208301.
[83]
D. S. Bastos, B. N. Barreto, H. K. S. Souza, M. Bastos, M. H. M. Rocha-Leão, C. T. Andrade, M. P. Gonçalves, Food Hydrocolloids 2010, 24, 709.
CrossRef Google scholar
[84]
J. Liu, Y. Y. Shim, J. Shen, Y. Wang, M. J. T. Reaney, Food Hydrocolloids 2017, 64, 18.
CrossRef Google scholar
[85]
F. Weinbreck, R. H. W. Wientjes, H. Nieuwenhuijse, G. W. Robijn, C. G. D. Kruif, J. Rheol. 2004, 48, 1215.
CrossRef Google scholar
[86]
A. K. Stone, A. Teymurova, M. T. Nickerson, Food Biophys. 2014, 9, 203.
CrossRef Google scholar
[87]
I. Bos, E. Brink, L. Michels, J. Sprakel, Soft Matter 2022, 18, 2012.
CrossRef Google scholar
[88]
X. Wang, J. Lee, Y.-W. Wang, Q. Huang, Biomacromolecules 2007, 8, 992.
CrossRef Google scholar
[89]
M. Raei, A. Rafe, F. Shahidi, J. Food Eng. 2018, 228, 25.
CrossRef Google scholar
[90]
C. J. F Souza, E. E Garcia-Rojas, Food Hydrocoll. 2017, 66, 268.
CrossRef Google scholar
[91]
L. M. B Yoshihara, E. P. G. Arêas, Biophys. Chem. 2018, 236, 8.
[92]
C. M. R Rocha, H. K. S. Souza, N. F. Magalhães, C. T. Andrade, M. P. Gonçalves, Carbohydr. Polym. 2014, 110, 345.
[93]
X. Cui, F. Yu, Y. Xue, T. Zhang, L. Ji, Y. Wang, C. Xue, J. Food Sci. 2018, 83, 2176.
CrossRef Google scholar
[94]
C. Chai, J. Lee, Q. Huang, LWT–Food Sci. Technol. 2014, 59, 356.
CrossRef Google scholar
[95]
S. Boral, H. B. Bohidar, J. Phys. Chem. B 2010, 114, 12027.
CrossRef Google scholar
[96]
S. Ghorbani Gorji, E. Ghorbani Gorji, M. A. Mohammadifar, A. Zargaraan, Int. J. Biol. Macromol. 2014, 67, 503.
CrossRef Google scholar
[97]
L. Wang, Y. Cao, K. Zhang, Y. Fang, K. Nishinari, G. O. Phillips, Colloid Surf. A 2015, 482, 604.
CrossRef Google scholar
[98]
S. Ali, V. M. Prabhu, Gels 2018, 4, 11.
CrossRef Google scholar
[99]
E. Kizilay, D. Seeman, Y. Yan, X. Du, P. L. Dubin, L. Donato-Capel, L. Bovetto, C. Schmitt, Soft Matter 2014, 10, 7262.
CrossRef Google scholar
[100]
Y. L. Liu, B. Momani, H. H. Winter, S. L. Perry, Soft Matter 2017, 13, 7332.
CrossRef Google scholar
[101]
H. Bohidar, P. L. Dubin, P. R. Majhi, C. Tribet, W. Jaeger, Biomacromolecules 2005, 6, 1573.
CrossRef Google scholar
[102]
M. Tekaat, D. Bütergerds, M. Schönhoff, A. Fery, C. Cramer, Phys. Chem. Chem. Phys. 2015, 17, 22552.
CrossRef Google scholar
[103]
S. M. Lalwani, P. Batys, M. Sammalkorpi, J. L. Lutkenhaus, Macromolecules 2021, 54, 7765.
CrossRef Google scholar
[104]
S. Manoj Lalwani, C. I. Eneh, J. L. Lutkenhaus, Phys. Chem. Chem. Phys. 2020, 22, 24157.
CrossRef Google scholar
[105]
S. Lindhoud, M. A. C. Stuart, Polyelectrolyte Complexes in the Dispersed and Solid State I: Principles and Theory (Ed: M. Müller), Springer Berlin Heidelberg, Berlin, Heidelberg 2014, p.139. https://doi.org/10.1007/12_2012_178
[106]
F. Weinbreck, H. S. Rollema, R. H. Tromp, C. G. De Kruif, Langmuir 2004, 20, 6389.
CrossRef Google scholar
[107]
P. D. S Peixoto, G. M. Tavares, T. Croguennec, A. Nicolas, P. Hamon, C. Roiland, S. Bouhallab, Langmuir 2016, 32, 7821.
CrossRef Google scholar
[108]
A. B. Kayitmazer, H. B. Bohidar, K. W. Mattison, A. Bose, J. Sarkar, A. Hashidzume, P. S. Russo, W. Jaeger, P. L. Dubin, Soft Matter 2007, 3, 1064.
CrossRef Google scholar
[109]
M. Leslie, Science 2021, 371, 336.
CrossRef Google scholar
[110]
A. Nolles, E. Hooiveld, A. H. Westphal, W. J. H. van Berkel, J. M. Kleijn, J. W. Borst, Langmuir 2018, 34, 12083.
CrossRef Google scholar
[111]
R. Kaup, A. H. Velders, ACS Nano 2022, 16, 14611.
CrossRef Google scholar
[112]
I. Bos, M. Timmerman, J. Sprakel, Macromolecules 2021, 54, 398.
CrossRef Google scholar
[113]
X. Li, Y. Hua, Y. Chen, X. Kong, C. Zhang, J. Agric. Food Chem. 2016, 64, 9054.
CrossRef Google scholar
[114]
A. K. Stone, M. T. Nickerson, Food Hydrocolloids 2012, 27, 271.
CrossRef Google scholar
[115]
Y. A. Antonov, I. L. Zhuravleva, M. Celus, C. Kyomugasho, S. Lombardo, W. Thielemans, M. Hendrickx, P. Moldenaers, R. Cardinaels, Food Hydrocolloids 2020, 99, 105345.
CrossRef Google scholar
[116]
W. Jin, Z. Wang, D. Peng, W. Shen, Z. Zhu, S. Cheng, B. Li, Q. Huang, Food Chem. 2020, 331, 127320.
CrossRef Google scholar
[117]
X. Wang, Y. Li, Y.-W. Wang, J. Lal, Q. Huang, J. Phys. Chem. B 2007, 111, 515.
CrossRef Google scholar
[118]
W. F. Xiong, C. Ren, J. Li, B. Li, Food Hydrocolloids 2018, 82, 355.
CrossRef Google scholar
[119]
K. C. Biplab, T. Nii, T. Mori, Y. Katayama, K. Akihiro, Chem. Sci. 2023, 14, 6608.
CrossRef Google scholar
[120]
J. Li, W. Jin, W. Xu, G. Liu, Q. Huang, Z. Zhu, S. Li, S. Cheng, Int. J. Biol. Macromol. 2020, 154, 1245.
CrossRef Google scholar
[121]
Y. A. Antonov, M. Celus, C. Kyomugasho, M. Hendrickx, P. Moldenaers, R. Cardinaels, Food Hydrocolloids 2019, 94, 268.
CrossRef Google scholar
[122]
D. P. Seeman, J. Phys. Chem. Lett. 2015, 3, 731.
[123]
Y. Xu, M. Mazzawi, K. Chen, L. Sun, P. L. Dubin, Biomacromolecules 2011, 12, 1512.
CrossRef Google scholar
[124]
R. A. Kapelner, A. C. Obermeyer, Chem. Sci. 2019, 10, 2700.
CrossRef Google scholar
[125]
S. Kim, H. V. Sureka, A. B. Kayitmazer, G. Wang, J. W. Swan, B. D. Olsen, Biomacromolecules 2020, 21, 3026.
CrossRef Google scholar
[126]
W. C. Blocher McTigue, S. L. Perry, Soft Matter 2019, 15, 3089.
CrossRef Google scholar
[127]
H. K. S Souza, M. D. P. Gonçalves, J. Gómez, Biomacromolecules 2011, 12, 1015.
CrossRef Google scholar
[128]
D. Priftis, M. Tirrell, Soft Matter 2012, 8, 9396.
CrossRef Google scholar
[129]
A. B. Kayitmazer, A. F. Koksal, E. Kilic Iyilik, Soft Matter 2015, 11, 8605.
CrossRef Google scholar
[130]
S. Jeong, B. Kim, H.-C. Lau, A. Kim, Pharmaceutics 2019, 11, 530.
CrossRef Google scholar
[131]
C. L. Cooper, P. L. Dubin, A. B. Kayitmazer, S. Turksen, Curr. Opin. Colloid Interface Sci. 2005, 10, 52.
CrossRef Google scholar
[132]
D. Takahashi, Y. Kubota, K. Kokai, T. Izumi, M. Hirata, E. Kokufuta, Langmuir 2000, 16, 3133.
CrossRef Google scholar
[133]
M. Skepö, P. Linse, Macromolecules 2003, 36, 508.
CrossRef Google scholar
[134]
M. Jonsson, P. Linse, J. Chem. Phys. 2001, 115, 10975.
CrossRef Google scholar
[135]
T. Wallin, P. Linse, Langmuir 1996, 12, 305.
CrossRef Google scholar
[136]
S. Stoll, P. Chodanowski, Macromolecules 2002, 35, 9556.
CrossRef Google scholar
[137]
W. C. Blocher McTigue, S. L. Perry, Small 2020, 16, 1907671.
CrossRef Google scholar
[138]
P. S. Roy, A. Samanta, M. Mukherjee, B. Roy, A. Mukherjee, Ind. Eng. Chem. Res. 2013, 52, 15728.
CrossRef Google scholar
[139]
S. Lindhoud, M. M. A. E. Claessens, Soft Matter 2016, 12, 408.
CrossRef Google scholar
[140]
J. van Lente, M. Pazos Urrea, T. Brouwer, B. Schuur, S. Lindhoud, Green Chem. 2021, 23, 5812.
CrossRef Google scholar
[141]
C. J. F Souza, E. E Garcia-Rojas, C. S. Favaro-Trindade, Food Hydrocolloids 2018, 83, 88.
CrossRef Google scholar
[142]
C. J. F Souza, E. E Garcia-Rojas, C. S. F. Souza, L. C. Vriesmann, J. Vicente, M. G. de Carvalho, C. L. O. Petkowicz, C. S Favaro-Trindade, Int. J. Biol. Macromol. 2019, 122, 594.
CrossRef Google scholar
[143]
K. A. Black, D. Priftis, S. L. Perry, J. Yip, W. Y. Byun, M. Tirrell, ACS Macro Lett. 2014, 3, 1088.
CrossRef Google scholar
[144]
S. Kübelbeck, J. Mikhael, S. Schoof, A. Andrieu-Brunsen, G. Baier, J. Appl. Polym. Sci. 2017, 134, 45036.
[145]
J. Zheng, Q. Gao, G. Ge, W. Sun, P. Van der Meeren, M. Zhao, Food Hydrocolloids 2022, 133, 107964.
CrossRef Google scholar
[146]
L. K. Mao, Q. Y. Pan, F. Yuan, Y. X. Gao, Food Chem. 2019, 276, 307.
CrossRef Google scholar
[147]
L. A. Bosnea, T. Moschakis, C. G. Biliaderis, Food Bioprocess Technol. 2014, 7, 2767.
CrossRef Google scholar
[148]
L. A. Bosnea, T. Moschakis, P. S. Nigam, C. G. Biliaderis, LWT–Food Sci. Technol. 2017, 77, 282.
CrossRef Google scholar
[149]
T. Marques da Silva, E. Jacob Lopes, C. F. Codevilla, A. J. Cichoski, É. M. D. M. Flores, M. H. Motta, C. D. B. da Silva, C. R. F. Grosso, C. R. de Menezes, LWT–Food Sci. Technol. 2018, 90, 412.
CrossRef Google scholar
[150]
H. Lenormand, F. Amar-Bacoup, J.-C. Vincent, Biophys. Chem. 2013, 175-176, 63.
CrossRef Google scholar
[151]
H. Lenormand, B. Deschrevel, F. Tranchepain, J.-C. Vincent, Biopolymers 2008, 89, 1088.
CrossRef Google scholar
[152]
N. Woitovich Valetti, M. E. Brassesco, G. A. Picó, J. Chem. Technol. Biotechnol. 2016, 91, 2921.
CrossRef Google scholar
[153]
S. Yang, X. Li, Y. Hua, Y. Chen, X. Kong, C. Zhang, J. Agric. Food Chem. 2020, 68, 1698.
CrossRef Google scholar
[154]
B. Zeeb, M. Yavuz-Duzgun, J. Dreher, J. Evert, T. Stressler, L. Fischer, B. Ozcelik, J. Weiss, Food Funct. 2018, 9, 2261.
CrossRef Google scholar
[155]
S. Jeong, B. Kim, M. Park, E. Ban, S.-H. Lee, A. Kim, Pharmaceutics 2020, 12, 334.
CrossRef Google scholar
[156]
M. G. Sankalia, R. C. Mashru, J. M. Sankalia, V. B. Sutariya, Eur. J. Pharm. Biopharm. 2007, 65, 215.
CrossRef Google scholar
[157]
B. K. Green, S. Lowell, (NCR Corp) US 1956.
[158]
B. K. Green, S. Lowell, (NCR Corp) US 1957.
[159]
M. Li, R. Mirshafian, J. Wang, H. Mohanram, K. A. Ahn, S. Hosseinzadeh, K. V. Pervushin, J. H. Waite, J. Yu, Biomacromolecules 2023, 24, 4190.
CrossRef Google scholar
[160]
M. B. Santos, M. Geraldo de Carvalho, E. E Garcia-Rojas, Food Hydrocolloids 2021, 112, 106347.
CrossRef Google scholar
[161]
M. S. M Meiguni, M. Salami, K. Rezaei, M. A. Aliyari, S.-B. Ghaffari, Z. Emam-Djomeh, J. F. Kennedy, A. Ghasemi, Int. J. Biol. Macromol. 2023, 224, 170.
CrossRef Google scholar
[162]
L. Maldonado, R. Sadeghi, J. Kokini, Colloid Surf. B 2017, 159, 759.
CrossRef Google scholar
[163]
M. S. Mirmohammad Meiguni, M. Salami, K. Rezaei, S.-B. Ghaffari, M. A. Aliyari, Z. Emam-Djomeh, Y. Barazandegan, I. Gruen, J. Food Sci. 2022, 87, 4930.
CrossRef Google scholar
[164]
Y. Lan, L. Wang, S. Cao, Y. Zhong, Y. Li, Y. Cao, L. Zhao, Food Funct. 2017, 8, 4070.
CrossRef Google scholar
[165]
L. Tavares, C. P. Zapata Noreña, Food Hydrocolloids 2019, 89, 360.
CrossRef Google scholar
[166]
V. B. de Souza, M. Thomazini, M. A. Echalar Barrientos, C. M. Nalin, R. Ferro-Furtado, M. I. Genovese, C. S Favaro-Trindade, Food Hydrocolloids 2018, 77, 297.
CrossRef Google scholar
[167]
F. Comert, P. L. Dubin, Adv. Colloid Interface Sci. 2017, 239, 213.
CrossRef Google scholar
[168]
K. O. Margossian, M. U. Brown, T. Emrick, M. Muthukumar, Nat. Commun. 2022, 13, 2250.
[169]
J. Liu, S. L. Perry, B. Z. Tang, M. V. Tirrell, Matter 2022, 5, 3107.
CrossRef Google scholar
[170]
A. Yüksel, N. Şahin-Ye¸silçubuk, J. Food Process Eng. 2018, 41, e12907.
[171]
J. D Rios-Mera, E. Saldaña, Y. Ramírez, E. A. Auquiñivín, I. D. Alvim, C. J Contreras-Castillo, LWT–Food Sci. Technol. 2019, 116, 108555.
CrossRef Google scholar
[172]
W. R. Glomm, P. P. Molesworth, B. Yesiltas, C. Jacobsen, H. Johnsen, Food Hydrocolloids 2023, 140, 108598.
CrossRef Google scholar
[173]
D. Eratte, S. McKnight, T. R. Gengenbach, K. Dowling, C. J. Barrow, B. P. Adhikari, J. Funct. Foods 2015, 19, 882.
CrossRef Google scholar
[174]
F. Plati, A. Paraskevopoulou, Food Hydrocolloids 2023, 136, 108284.
CrossRef Google scholar
[175]
R. Hernández-Nava, A. López-Malo, E. Palou, N. Ramírez-Corona, M. T. Jiménez-Munguía, Food Hydrocolloids 2020, 109, 106077.
[176]
L. Hernández-Rodríguez, C. Lobato-Calleros, D. J. Pimentel-González, E. J Vernon-Carter, Food Hydrocolloids 2014, 36, 181.
CrossRef Google scholar
[177]
X. Qi, Y. Lan, J.-B. Ohm, B. Chen, J. Rao, Food Funct. 2021, 12, 8907.
CrossRef Google scholar
[178]
M. Zhao, Y. Wang, X. Huang, M. Gaenzle, Z. Wu, K. Nishinari, N. Yang, Y. Fang, Food Funct. 2018, 9, 1000.
CrossRef Google scholar
[179]
M. Zhao, X. Huang, H. Zhang, Y. Zhang, M. Gänzle, N. Yang, K. Nishinari, Y. Fang, Food Hydrocolloids 2020, 105, 105790.
CrossRef Google scholar
[180]
L. A. Bosnea, T. Moschakis, C. G. Biliaderis, Food Funct. 2017, 8, 554.
CrossRef Google scholar
[181]
T. M. da Silva, C. de Deus, B. de Souza Fonseca, E. J. Lopes, A. J. Cichoski, E. A. Esmerino, C. de Bona da Silva, E. I. Muller, E. M. Moraes Flores, C. R. de Menezes, Food Res. Int. 2019, 125, 108577.
CrossRef Google scholar
[182]
T. Marques da Silva, V. Sonza Pinto, V. Ramires Fonseca Soares, D. Marotz, A. J. Cichoski, L. Queiroz Zepka, E. Jacob Lopes, C. de Bona da Silva, C. R. de Menezes, Food Res. Int. 2021, 141, 110190.
CrossRef Google scholar
[183]
M. Dompé, F. J Cedano-Serrano, O. Heckert, N. van da Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, M. Kamperman, Adv. Mater. 2019, 31, 1808179.
[184]
M. Dompé, F. J Cedano-Serrano, M. Vahdati, L. van Westerveld, D. Hourdet, C. Creton, J. van der Gucht, T. Kodger, M. Kamperman, Adv. Mater. Interfaces 2020, 7, 1901785.
[185]
E. Ewaldz, B. Brettmann, ACS Appl. Polym. Mater. 2019, 1, 298.
CrossRef Google scholar
[186]
X. Meng, S. L. Perry, J. D. Schiffman, ACS Macro Lett. 2017, 6, 505.
CrossRef Google scholar
[187]
X. Meng, J. D. Schiffman, S. L. Perry, Macromolecules 2018, 51, 8821.
CrossRef Google scholar
[188]
J. Sun, S. L. Perry, J. D. Schiffman, Biomacromolecules 2019, 20, 4191.
CrossRef Google scholar
[189]
X. Meng, Y. Du, Y. Liu, E. B. Coughlin, S. L. Perry, J. D. Schiffman, Macromolecules 2021, 54, 5033.
CrossRef Google scholar
[190]
M. Khoonkari, J. E. Sayed, M. Oggioni, A. Amirsadeghi, P. Dijkstra, D. Parisi, F. Kruyt, P. van Rijn, M. K. Włodarczyk-Biegun, M. Kamperman, Adv. Mater. 2023, 35, 2210769.
[191]
L. Wang, L. Duan, G. Liu, J. Sun, M.-A. Shahbazi, S. C. Kundu, R. L. Reis, B. Xiao, X. Yang, Adv. Sci. 10, 2207352.
[192]
I. S. Kurtz, S. Sui, X. Hao, M. Huang, S. L. Perry, J. D. Schiffman, ACS Appl. Bio Mater. 2019, 2, 3926.
CrossRef Google scholar
[193]
S.-W. Maeng, J.-Y. Ko, T. Y. Park, J. Yun, S. H. Park, S. J. Han, K. I. Joo, S. Ha, M. Jee, G.-I. Im, H. J. Cha, Chem. Eng. J. 2023, 463, 142379.
CrossRef Google scholar
[194]
B. Kim, E. Ban, A. Kim, Pharmaceutics 2021, 13, 2112.
CrossRef Google scholar
[195]
X. Zhao, L. Wang, J. Gao, X. Chen, K. Wang, Biomater. Sci. 2020, 8, 1702.
CrossRef Google scholar
[196]
H. Li, Y. Shi, W. Zhang, M. Yu, X. Chen, M. Kong, ACS Appl. Mater. Interfaces 2022, 14, 18097.
CrossRef Google scholar
[197]
L. Tavares, H. K. S. Souza, M. P. Gonçalves, C. M. R. Rocha, Food Hydrocolloids 2021, 113, 106471.
CrossRef Google scholar
[198]
H. Hashemi Gahruie, A. Mirzapour, F. Ghiasi, M. H. Eskandari, M. Moosavi-Nasab, S. M. H. Hosseini, LWT–Food Sci. Technol. 2022, 153, 112422.
CrossRef Google scholar
[199]
L. R. Amado, K. D. S. Silva, M. A. Mauro, J. Appl. Polym. Sci. 2020, 137, 48732.
[200]
S. Esteghlal, M. Niakousari, S. M. H. Hosseini, Int. J. Biol. Macromol. 2018, 114, 1.
CrossRef Google scholar
[201]
N. Eghbal, M. S. Yarmand, M. Mousavi, P. Degraeve, N. Oulahal, A. Gharsallaoui, Carbohydr. Polym. 2016, 151, 947.
CrossRef Google scholar
[202]
M. Jahromi, M. Niakousari, M. T. Golmakani, M. A. Mohammadifar, Int. J. Biol. Macromol. 2020, 165, 1949.
CrossRef Google scholar
[203]
K. G. Nikolaev, S. A. Ulasevich, O. Luneva, O. Y. Orlova, D. Vasileva, S. Vasilev, A. S. Novikov, E. V. Skorb, ACS Appl. Polym. Mater. 2020, 2, 105.
CrossRef Google scholar
[204]
M. Haile, O. Sarwar, R. Henderson, R. Smith, J. C. Grunlan, Macromol. Rapid Commun. 2017, 38, 1600594.
[205]
K. D. Kelly, J. B. Schlenoff, ACS Appl. Mater. Interfaces 2015, 7, 13980.
CrossRef Google scholar
[206]
S. Gao, S. Srivastava, ACS Macro Lett. 2022, 11, 902.
CrossRef Google scholar
[207]
Y. Ji, Y. Lin, Y. Qiao, J. Am. Chem. Soc. 2023, 145, 12576.
CrossRef Google scholar
[208]
C. Zhao, J. Li, S. Wang, Z. Xu, X. Wang, X. Liu, L. Wang, X. Huang, ACS Nano 2021, 15, 10048.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/