Biomimetic Fe7S8/Carbon electrocatalyst from [FeFe]-Hydrogenase for improving pH-Universal electrocatalytic hydrogen production

Dohun Kim, Subramani Surendran, Sejin Im, Jaehyoung Lim, Kyoungsuk Jin, Ki Tae Nam, Uk Sim

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 444. DOI: 10.1002/agt2.444
RESEARCH ARTICLE

Biomimetic Fe7S8/Carbon electrocatalyst from [FeFe]-Hydrogenase for improving pH-Universal electrocatalytic hydrogen production

Author information +
History +

Abstract

Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production. Inspired by biological systems, Fe7S8 nanoparticles incorporated on polydopamine matrix electrocatalyst were synthesized by co-precipitation and annealing process. The resulting Fe7S8/C electrocatalyst possesses a three-dimensional structure and exhibits enhanced electrocatalytic performance for hydrogen production across various pH conditions. Notably, the Fe7S8/C electrocatalyst demonstrates exceptional activity, achieving low overpotentials of 90.6, 45.9, and 107.4 mV in acidic, neutral, and alkaline environments, respectively. Electrochemical impedance spectroscopy reveals that Fe7S8/C exhibits the lowest charge transfer resistance under neutral conditions, indicating an improved proton-coupled electron transfer process. Continuous-wave electron paramagnetic resonance results confirm a change in the valence state of Fe from 3+ to 1+ during the hydrogen evolution reaction (HER). These findings closely resemble the behavior of natural [FeFe]-hydrogenase, known for its superior hydrogen production in neutral conditions. The remarkable performance of our Fe7S8/C electrocatalyst opens up new possibilities for utilizing bioinspired materials as catalysts for the HER.

Keywords

biomimetic electrocatalyst / hydrogen production / renewable energy

Cite this article

Download citation ▾
Dohun Kim, Subramani Surendran, Sejin Im, Jaehyoung Lim, Kyoungsuk Jin, Ki Tae Nam, Uk Sim. Biomimetic Fe7S8/Carbon electrocatalyst from [FeFe]-Hydrogenase for improving pH-Universal electrocatalytic hydrogen production. Aggregate, 2024, 5(1): 444 https://doi.org/10.1002/agt2.444

References

[1]
H. Zhao, D. Lu, J. Wang, W. Tu, D. Wu, S. W. Koh, P. Gao, Z. J. Xu, S. Deng, Y. Zhou, Nat. Commun.2021, 12, 1.
[2]
Z. Lin, B. Xiao, Z. Wang, W. Tao, S. Shen, L. Huang, J. Zhang, F. Meng, Q. Zhang, L. Gu, Adv. Funct. Mater.2021, 31, 2102321.
[3]
C. Wang, Y. Li, C. Gu, L. Zhang, X. Wang, J. Tu, Chem. Eng. J.2022, 429, 132226.
CrossRef Google scholar
[4]
R. W. Howarth, M. Z. Jacobson, Energy Sci. Eng.2021, 9, 1676.
CrossRef Google scholar
[5]
F. Yang, Y. Luo, Q. Yu, Z. Zhang, S. Zhang, Z. Liu, W. Ren, H. M. Cheng, J. Li, B. Liu, Adv. Funct. Mater.2021, 31, 2010367.
[6]
Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun, S. Zheng, X. Ren, Z. Tao, D. Zhang, J. Chen, ACS Energy Lett.2021, 6, 2174.
CrossRef Google scholar
[7]
S. Yuan, X. Duan, J. Liu, Y. Ye, F. Lv, T. Liu, Q. Wang, X. Zhang, Energy Storage Mater.2021, 42, 317.
CrossRef Google scholar
[8]
J. Zhu, E. Jiang, X. Wang, Z. Pan, X. Xu, S. Ma, P. Kang Shen, L. Pan, M. Eguchi, A. K. Nanjundan, J. Shapter, Y. Yamauchi, Chem. Eng. J.2022, 427, 130946.
CrossRef Google scholar
[9]
Y. Tan, Y. Wei, K. Liang, L. Wang, S. Zhang, Int. J. Hydrogen Energy2021, 46, 26340.
CrossRef Google scholar
[10]
Z. Ding, H. Yu, X. Liu, N. He, X. Chen, H. Li, M. Wang, Y. Yamauchi, X. Xu, M. A. Amin, J. Colloid Interface Sci.2022, 616, 210.
CrossRef Google scholar
[11]
S. Niu, J. Yang, H. Qi, Y. Su, Z. Wang, J. Qiu, A. Wang, T. Zhang, J. Energy Chem.2021, 57, 371.
CrossRef Google scholar
[12]
N. He, X. Chen, B. Fang, Y. Li, T. Lu, L. Pan, J. Colloid Interface Sci.2023, 640, 820.
CrossRef Google scholar
[13]
B. Fang, N. He, Y. Li, T. Lu, P. He, X. Chen, Z. Zhao, L. Pan, Electrochim. Acta2023, 448, 142187.
CrossRef Google scholar
[14]
J. Corredor, D. Harankahage, F. Gloaguen, M. J. Rivero, M. Zamkov, I. Ortiz, Chemosphere2021, 278, 130485.
CrossRef Google scholar
[15]
X. Z. Wang, S. L. Meng, H. Xiao, K. Feng, Y. Wang, J. X. Jian, X. B. Li, C. H. Tung, L. Z. Wu, Angew. Chem.2020, 132, 18558.
CrossRef Google scholar
[16]
A. Morozan, H. Johnson, C. Roiron, G. Genay, D. Aldakov, A. Ghedjatti, C. T. Nguyen, P. D. Tran, S. Kinge, V. Artero, ACS Catal.2020, 10, 14336.
CrossRef Google scholar
[17]
J. Shi, W. Wang, M. Teng, F. Kang, M. E’qi, Z. Huang, J. Colloid Interface Sci.2022, 608, 954.
CrossRef Google scholar
[18]
J. Ye, Y. Zang, Q. Wang, Y. Zhang, D. Sun, L. Zhang, G. Wang, X. Zheng, J. Zhu, J. Energy Chem.2021, 56, 283.
CrossRef Google scholar
[19]
M.-X. Li, Y.-N. Zhou, Y.-W. Dong, X. Liu, R.-N. Luan, B. Liu, J.-B. Zeng, Y.-M. Chai, B. Dong, Int. J. Hydrogen Energy2022, 47, 20518.
CrossRef Google scholar
[20]
M. Wang, W. Tang, S. Liu, X. Liu, X. Chen, X. Hu, L. Qiao, Y. Sui, J. Alloys Compd.2021, 862, 158610.
CrossRef Google scholar
[21]
Y. Li, S. Zhu, Y. Xu, R. Ge, J. Qu, M. Zhu, Y. Liu, J. M. Cairney, R. Zheng, S. Li, Chem. Eng. J.2021, 421, 127804.
CrossRef Google scholar
[22]
Y. Shan, T. Li, Phys. Lett. A2020, 384, 126368.
CrossRef Google scholar
[23]
W. He, J. Cheng, Y. Gao, C. Liu, J. Zhao, Y. Li, Q. Hao, Nanoscale2021, 13, 12951.
CrossRef Google scholar
[24]
D. Kong, J. J. Cha, H. Wang, H. R. Lee, Y. Cui, Energy Environ. Sci.2013, 6, 3553.
CrossRef Google scholar
[25]
R. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong, S. A. Cetegen, T. Jiang, S. P. Alpay, S. L. Suib, J. Am. Chem. Soc.2017, 139, 13604.
CrossRef Google scholar
[26]
Z. Jing, Q. Zhao, D. Zheng, L. Sun, J. Geng, Q. Zhou, J. Lin, J. Mater. Chem. A2020, 8, 20323.
CrossRef Google scholar
[27]
L. Sun, J. Geng, M. Gao, D. Zheng, Z. Jing, Q. Zhao, J. Lin, Chemistry2021, 27, 10998.
[28]
W. J. Jiang, S. Niu, T. Tang, Q. H. Zhang, X. Z. Liu, Y. Zhang, Y. Y. Chen, J. H. Li, L. Gu, L. J. Wan, Angew. Chem. Int. Ed.2017, 56, 6572.
CrossRef Google scholar
[29]
P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu, W. Cai, S. Chen, Nat. Catal.2022, 5, 900.
CrossRef Google scholar
[30]
D. Kim, J. An, S. Surendran, J. Lim, H.-Y. Jeong, S. Im, J. Y. Kim, K. T. Nam, U. Sim J. Colloid Interface Sci.2023, 650, 1406.
CrossRef Google scholar
[31]
G. Zhong, T. Cheng, A. H. Shah, C. Wan, Z. Huang, S. Wang, T. Leng, Y. Huang, W. A. Goddard III, X. Duan, Proc. Natl. Acad. Sci. USA2022, 119, e2208187119.
[32]
P. S. Lamoureux, A. R. Singh, K. Chan ACS Catal., 2019, 9, 6194.
CrossRef Google scholar
[33]
A. P. Dostanko, A. O. Korobko, N. M. Lapchuk, J. Appl. Spectrosc.2008, 75, 203.
CrossRef Google scholar
[34]
H. S. Jeong, S. Hong, H. S. Yoo, J. Kim, Y. Kim, C. Yoon, S. J. Lee, S. H. Kim, Inorg. Chem. Front.2021, 8, 1279.
CrossRef Google scholar
[35]
A. Adamska, A. Silakov, C. Lambertz, O. Rüdiger, T. Happe, E. Reijerse, W. Lubitz, Angew. Chem. Int. Ed.2012, 51, 11458.
CrossRef Google scholar
[36]
G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J. M. Mouesca, E. Reijerse, W. Lubitz, Nature2013, 499, 66.
CrossRef Google scholar
[37]
F. Arrigoni, F. Rizza, L. Bertini, L. De Gioia, G. Zampella, Eur. J. Inorg. Chem.2022, 2022, e202200153.
[38]
H. C. Honig, L. Elbaz, ChemElectroChem2023, 10, e202300042.
[39]
N. Leonard, W. Ju, I. Sinev, J. Steinberg, F. Luo, A. S. Varela, B. R. Cuenya, P. Strasser, Chem. Sci.2018, 9, 5064.
CrossRef Google scholar
[40]
Q. Cao, S. Hao, Y. Wu, K. Pei, W. You, R. Che, Chem. Eng. J.2021, 424, 130444.
CrossRef Google scholar
[41]
Z. Jia, K. Nomoto, Q. Wang, C. Kong, L. Sun, L. C. Zhang, S. X. Liang, J. Lu, J. J. Kruzic, Adv. Funct. Mater.2021, 31, 2101586.
[42]
F. Tian, S. Geng, L. He, Y. Huang, A. Fauzi, W. Yang, Y. Liu, Y. Yu, Chem. Eng. J.2021, 417, 129232.
CrossRef Google scholar
[43]
X. Zhao, Z. Zhang, X. Cao, J. Hu, X. Wu, A. Y. R. Ng, G.-P. Lu, Z. Chen, Appl. Catal. B2020, 260, 118156.
CrossRef Google scholar
[44]
S. R. Kadam, A. N. Enyashin, L. Houben, R. Bar-Ziv, M. Bar-Sadan, J. Mater. Chem. A2020, 8, 1403.
CrossRef Google scholar
[45]
C. Zhang, H. Liu, Y. Liu, X. Liu, Y. Mi, R. Guo, J. Sun, H. Bao, J. He, Y. Qiu, Small Methods2020, 4, 2000208.
[46]
F. Gong, M. Liu, S. Ye, L. Gong, G. Zeng, L. Xu, X. Zhang, Y. Zhang, L. Zhou, S. Fang, Adv. Funct. Mater.2021, 31, 2101715.
[47]
A. Kumar, V. Q. Bui, J. Lee, L. Wang, A. R. Jadhav, X. Liu, X. Shao, Y. Liu, J. Yu, Y. Hwang, Nat. Commun.2021, 12, 1–10.
[48]
Y. Wang, S. Wang, R. Li, H. Li, Z. Guo, B. Chen, R. Li, Q. Yao, X. Zhang, H. Chen, Carbon2020, 162, 586.
CrossRef Google scholar
[49]
M. Ma, J. Xu, H. Wang, X. Zhang, S. Hu, W. Zhou, H. Liu, Appl. Catal. B2021, 297, 120455.
CrossRef Google scholar
[50]
J. Wu, T. Chen, C. Zhu, J. Du, L. Huang, J. Yan, D. Cai, C. Guan, C. Pan, ACS Sustainable Chem. Eng.2020, 8, 4474.
CrossRef Google scholar
[51]
M. Zhang, Y. Xu, S. Wang, M. Liu, L. Wang, Z. Wang, X. Li, L. Wang, H. Wang, J. Mater. Chem. A2021, 9, 13080.
CrossRef Google scholar
[52]
Y. Qiao, P. Yuan, C.-W. Pao, Y. Cheng, Z. Pu, Q. Xu, S. Mu, J. Zhang, Nano Energy2020, 75, 104881.
CrossRef Google scholar
[53]
Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian, H. Fu, Angew. Chem. Int. Ed.2021, 60, 6673.
CrossRef Google scholar
[54]
J. Wu, Q. Zhang, K. Shen, R. Zhao, W. Zhong, C. Yang, H. Xiang, X. Li, N. Yang, Adv. Funct. Mater.2022, 32, 2107802.
[55]
J. Jin, J. Yin, H. Liu, B. Huang, Y. Hu, H. Zhang, M. Sun, Y. Peng, P. Xi, C. H. Yan, Angew. Chem.2021, 133, 14236.
CrossRef Google scholar
[56]
Q. Han, Y. Luo, G. Liu, Y. Wang, J. Li, Z. Chen, J. Catal.2022, 443, 425.
[57]
J. Zhang, Z. Zhang, Y. Ji, J. Yang, K. Fan, X. Ma, C. Wang, R. Shu, Y. Chen, Appl. Catal. B2021, 282, 119609.
CrossRef Google scholar
[58]
Q. Fu, X. Wang, J. Han, J. Zhong, T. Zhang, T. Yao, C. Xu, T. Gao, S. Xi, C. Liang, Angew. Chem.2021, 133, 263.
CrossRef Google scholar
[59]
Z. Liu, S. Zhou, S. Xue, Z. Guo, J. Li, K. Qu, W. Cai, Chem. Eng. J.2021, 421, 127807.
CrossRef Google scholar
[60]
D. Zhao, K. Sun, W. C. Cheong, L. Zheng, C. Zhang, S. Liu, X. Cao, K. Wu, Y. Pan, Z. Zhuang, Angew. Chem.2020, 132, 9067.
CrossRef Google scholar
[61]
J. Zhan, X. Cao, J. Zhou, G. Xu, B. Lei, M. Wu, Chem. Eng. J.2021, 416, 128943.
CrossRef Google scholar
[62]
D. S. Baek, J. Lee, J. Kim, S. H. Joo, ACS Catal.2022, 12, 7415.
CrossRef Google scholar
[63]
J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard, J. B. Broderick, P. W. King, M. W. W. Adams, Biochim. Biophys. Acta2015, 1853, 1350.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/