Biomimetic Fe7S8/Carbon electrocatalyst from [FeFe]-Hydrogenase for improving pH-Universal electrocatalytic hydrogen production
Dohun Kim , Subramani Surendran , Sejin Im , Jaehyoung Lim , Kyoungsuk Jin , Ki Tae Nam , Uk Sim
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 444
Biomimetic Fe7S8/Carbon electrocatalyst from [FeFe]-Hydrogenase for improving pH-Universal electrocatalytic hydrogen production
Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production. Inspired by biological systems, Fe7S8 nanoparticles incorporated on polydopamine matrix electrocatalyst were synthesized by co-precipitation and annealing process. The resulting Fe7S8/C electrocatalyst possesses a three-dimensional structure and exhibits enhanced electrocatalytic performance for hydrogen production across various pH conditions. Notably, the Fe7S8/C electrocatalyst demonstrates exceptional activity, achieving low overpotentials of 90.6, 45.9, and 107.4 mV in acidic, neutral, and alkaline environments, respectively. Electrochemical impedance spectroscopy reveals that Fe7S8/C exhibits the lowest charge transfer resistance under neutral conditions, indicating an improved proton-coupled electron transfer process. Continuous-wave electron paramagnetic resonance results confirm a change in the valence state of Fe from 3+ to 1+ during the hydrogen evolution reaction (HER). These findings closely resemble the behavior of natural [FeFe]-hydrogenase, known for its superior hydrogen production in neutral conditions. The remarkable performance of our Fe7S8/C electrocatalyst opens up new possibilities for utilizing bioinspired materials as catalysts for the HER.
biomimetic electrocatalyst / hydrogen production / renewable energy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |