A pH-responsive nanoparticle delivery system containing dihydralazine and doxorubicin-based prodrug for enhancing antitumor efficacy

Lianxue Zhang, Jianxiang Huang, Damiano Buratto, Panli Han, Zaixing Yang, Ruhong Zhou

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 434. DOI: 10.1002/agt2.434
RESEARCH ARTICLE

A pH-responsive nanoparticle delivery system containing dihydralazine and doxorubicin-based prodrug for enhancing antitumor efficacy

Author information +
History +

Abstract

The efficacy of nanoparticle (NP)-based drug delivery technology is hampered by aberrant tumor stromal microenvironments (TSMs) that hinder NP transportation. Therefore, the promotion of NP permeation into deep tumor sites via the regulation of tumor microenvironments is of critical importance. Herein, we propose a potential solution using a dihydralazine (HDZ)-loaded nanoparticle drug delivery system containing a pH-responsive, cyclic RGD peptide-modified prodrug based on doxorubicin (cRGD-Dex-DOX). With a combined experimental and theoretical approach, we find that the designed NP system can recognize the acid tumor environments and precisely release the encapsulated HDZ into tumor tissues. HDZ can notably downregulate the expression levels of hypoxia-inducible factor 1α (HIF1α), α-smooth muscle actin, and fibronectin through the dilation of tumor blood vessels. These changes in the TSMs enhance the enrichment and penetration of NPs and also unexpectedly promote the infiltration of activated T cells into tumors, suggesting that such a system may offer an effective “multifunctional therapy” through both improving the chemotherapeutic effect and enhancing the immune response to tumors. In vivo experiments on 4T1 breast cancer bearing mice indeed validate that this therapy has the most outstanding antitumor effects over all the other tested control regimens, with the lowest side effects as well.

Keywords

antitumor / dihydralazine / drug delivery system / tumor stromal microenvironment / vasculature

Cite this article

Download citation ▾
Lianxue Zhang, Jianxiang Huang, Damiano Buratto, Panli Han, Zaixing Yang, Ruhong Zhou. A pH-responsive nanoparticle delivery system containing dihydralazine and doxorubicin-based prodrug for enhancing antitumor efficacy. Aggregate, 2024, 5(1): 434 https://doi.org/10.1002/agt2.434

References

[1]
M. E. O’Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczak, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler, C. B. C. S. Group, Ann. Oncol. 2004, 15, 440.
CrossRef Google scholar
[2]
Y. Min, J. M. Caster, M. J. Eblan, A. Z. Wang, Chem. Rev. 2015, 115, 11147.
CrossRef Google scholar
[3]
J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer. 2017, 17, 20.
CrossRef Google scholar
[4]
J. A. Nagy, S. H. Chang, A. M. Dvorak, H. F. Dvorak, Br. J. Cancer. 2009, 100, 865.
CrossRef Google scholar
[5]
H. Maeda, H. Nakamura, J. Fang, Adv. Drug Deliv. Rev. 2013, 65, 71.
CrossRef Google scholar
[6]
U. Prabhakar, H. Maeda, R. K. Jain, E. M Sevick-Muraca, W. Zamboni, O. C. Farokhzad, S. T. Barry, A. Gabizon, P. Grodzinski, D. C. Blakey, Cancer Res. 2013, 73, 2412.
CrossRef Google scholar
[7]
Y. Barenholz, J. Controlled Release 2012, 160, 117.
CrossRef Google scholar
[8]
L. Zhang, S. Zhang, J. Xu, Y. Li, J. He, Y. Yang, T. Huynh, P. Ni, G. Duan, Z. Yang, R. Zhou, ACS Appl. Mater. Interfaces 2020, 12, 43398.
CrossRef Google scholar
[9]
P. Han, L. Zhang, Y. Fu, Y. Fu, J. Huang, J. He, P. Ni, T. Khan, Y. Jiao, Z. Yang, R. Zhou, Nanoscale 2022, 15, 237.
CrossRef Google scholar
[10]
Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Adv. Mater. 2017, 29, 160662.
[11]
Y. Shamay, J. Shah, M. Isik, A. Mizrachi, J. Leibold, D. F. Tschaharganeh, D. Roxbury, J. Budhathoki-Uprety, K. Nawaly, J. L. Sugarman, E. Baut, M. R. Neiman, M. Dacek, K. S. Ganesh, D. C. Johnson, R. Sridharan, K. L. Chu, V. K. Rajasekhar, S. W. Lowe, J. D. Chodera, D. A. Heller, Nat. Mater. 2018, 17, 361.
CrossRef Google scholar
[12]
J. W. Nichols, Y. H. Bae, J. Controlled Release 2014, 190, 451.
CrossRef Google scholar
[13]
Y. Huang, S. Goel, D. G. Duda, D. Fukumura, R. K. Jain, Cancer Res. 2013, 73, 2943.
CrossRef Google scholar
[14]
R. K. Jain, Science 2005, 307, 58.
CrossRef Google scholar
[15]
T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. di Tomaso, R. K. Jain, Nature 2004, 427, 695.
CrossRef Google scholar
[16]
S. Li, Y. Zhang, J. Wang, Y. Zhao, T. Ji, X. Zhao, Y. Ding, X. Zhao, R. Zhao, F. Li, X. Yang, S. Liu, Z. Liu, J. Lai, A. K. Whittaker, G. J. Anderson, J. Wei, G. Nie, Nat. Biomed. Eng. 2017, 1, 667.
CrossRef Google scholar
[17]
S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Nature 2005, 436, 568.
CrossRef Google scholar
[18]
Y. Zheng, L. Han, Z. Chen, Y. Li, B. Zhou, R. Hu, S. Chen, H. Xiao, Y. Ma, G. Xie, J. Yang, X. Ding, L. Shen, iScience 2022, 25, 103785.
CrossRef Google scholar
[19]
P. Zhang, Y. Zhang, X. Ding, C. Xiao, X. Chen, Biomater. Sci. 2020, 8, 3052.
CrossRef Google scholar
[20]
Y. Kang, J. Kim, J. Park, Y. M. Lee, G. Saravanakumar, K. M. Park, W. Choi, K. Kim, E. Lee, C. Kim, W. J. Kim, Biomaterials 2019, 217, 119297.
CrossRef Google scholar
[21]
K. Hu, L. Miao, T. J. Goodwin, J. Li, Q. Liu, L. Huang, ACS Nano 2017, 11, 4916.
CrossRef Google scholar
[22]
M. Yin, S. Tan, Y. Bao, Z. Zhang, J. Controlled Release 2017, 258, 108.
CrossRef Google scholar
[23]
H. Yao, K. Xu, J. Zhou, L. Zhou, S. Wei, ACS Biomater. Sci. Eng. 2020, 6, 450.
CrossRef Google scholar
[24]
Y. Ma, Y. Zhao, N. K. Bejjanki, X. Tang, W. Jiang, J. Dou, M. I. Khan, Q. Wang, J. Xia, H. Liu, Y. Z. You, G. Zhang, Y. Wang, J. Wang, ACS Nano 2019, 13, 8890.
CrossRef Google scholar
[25]
Y. C. Sung, P. R. Jin, L. A. Chu, F. F. Hsu, M. R. Wang, C. C. Chang, S. J. Chiou, J. T. Qiu, D. Y. Gao, C. C. Lin, Y. S. Chen, Y. C. Hsu, J. Wang, F. N. Wang, P. L. Yu, A. S. Chiang, A. Y. Wu, J. J. Ko, C. P. Lai, T. T. Lu, Y. Chen, Nat. Nanotechnol. 2019, 14, 1160.
CrossRef Google scholar
[26]
Y. Chen, W. Song, L. shen, N. Qiu, M. Hu, Y. Liu, Q. Liu, L. Huang, ACS Nano 2019, 13, 1751.
[27]
S. Khan, S. Setua, S. Kumari, N. Dan, A. Massey, B. B. Hafeez, M. M. Yallapu, Z. E. Stiles, A. Alabkaa, J. Yue, A. Ganju, S. Behrman, M. Jaggi, S. C. Chauhan, Biomaterials 2019, 208, 83.
CrossRef Google scholar
[28]
R. Wang, X. Xu, D. Li, W. Zhang, X. Shi, H. Xu, J. Hong, S. Yao, J. Liu, Z. Wei, Y. Piao, Z. Zhou, Y. Shen, J. Tang, Biomaterials 2022, 288, 121737.
CrossRef Google scholar
[29]
D. Cao, J. He, J. Xu, M. Zhang, L. Zhao, G. Duan, Y. Cao, R. Zhou, P. Ni, Polym. Chem. 2016, 7, 4198.
CrossRef Google scholar
[30]
D. Fukumura, J. Kloepper, Z. Amoozgar, D. G. Duda, R. K. Jain, Nat. Rev. Clin. Oncol. 2018, 15, 325.
CrossRef Google scholar
[31]
J. Zhang, J. Liu, Pharmacol. Ther. 2013, 137, 200.
[32]
L. Miao, Q. Liu, C. M. Lin, C. Luo, Y. Wang, L. Liu, W. Yin, S. Hu, W. Y. Kim, L. Huang, Cancer Res. 2017, 77, 719.
CrossRef Google scholar
[33]
P. C. T Souza, R. Alessandri, J. Barnoud, S. Thallmair, I. Faustino, F. Grünewald, I. Patmanidis, H. Abdizadeh, B. M. H. Bruininks, T. A. Wassenaar, P. C. Kroon, J. Melcr, V. Nieto, V. Corradi, H. M. Khan, J. Domański, M. Javanainen, H. Martinez-Seara, N. Reuter, R. B. Best, I. Vattulainen, L. Monticelli, X. Periole, D. P. Tieleman, A. H. de Vries, S. J. Marrink, Nat. Meth. 2021, 18, 382.
CrossRef Google scholar
[34]
F. Grunewald, P. C. T. Souza, S. J. Marrink, Biophys J. 2023, 122, 419a.
CrossRef Google scholar
[35]
F. Grünewald, R. Alessandri, P. C. Kroon, L. Monticelli, P. C. T. Souza, S. J. Marrink, Nat. Commun. 2022, 13, 68.
[36]
R. Alessandri, J. Barnoud, A. S. Gertsen, I. Patmanidis, A. H. de Vries, P. C. T. Souza, S. J. Marrink, Adv. Theory Simul. 2022, 5, 2100391.
[37]
L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, W. L. Jorgensen, Nucleic Acids Res. 2017, 45, W331.
CrossRef Google scholar
[38]
B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.
CrossRef Google scholar
[39]
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. Model. 1996, 14, 33.
CrossRef Google scholar
[40]
C. Wu, S. Liu, S. Zhang, Z. Yang, J. Chem. Inf. Model. 2020, 60, 5126.
CrossRef Google scholar
[41]
G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 2007, 126, 014101.
[42]
M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.
CrossRef Google scholar
[43]
D. H. de Jong, S. Baoukina, H. I. Ingolfsson, S. J. Marrink, Comput. Phys. Commun. 2016, 199, 1.
[44]
T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/