Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives

Yaxuan Wang, Ting Xu, Kun Liu, Meng Zhang, Xu-Min Cai, Chuanling Si

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 428. DOI: 10.1002/agt2.428
REVIEW

Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives

Author information +
History +

Abstract

Supercapacitors exhibit considerable potential as energy storage devices due to their high power density, fast charging and discharging abilities, long cycle life, and ecofriendliness. With the increasing environmental concerns associated with synthetic compounds, the use of environment friendly biopolymers to replace conventional petroleum-based materials has been widely studied. Biomass-based materials are biodegradable, renewable, environment friendly and non-toxic. The unique hierarchical nanostructure, excellent mechanical properties and hydrophilicity allow them to be used to create functional conductive materials with precisely controlled structures and different properties. In this review, the latest development of biomass-based supercapacitor materials is reviewed and discussed. This paper describes the physical and chemical properties of various biopolymers and their impact on supercapacitors, as well as the classification and basic principles of supercapacitors. Then, a comprehensive discussion is presented on the utilization of biomass-based materials in supercapacitors and their recent applications across a range of supercapacitor devices. Finally, an overview of the future prospects and challenges pertaining to the utilization of biomass-based materials in supercapacitors is provided.

Keywords

biomass / electrodes / electrolyte / energy storage / supercapacitor

Cite this article

Download citation ▾
Yaxuan Wang, Ting Xu, Kun Liu, Meng Zhang, Xu-Min Cai, Chuanling Si. Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate, 2024, 5(1): 428 https://doi.org/10.1002/agt2.428

References

[1]
S. Admassie, F. N. Ajjan, A. Elfwing, O. Inganäs, Mater. Horiz. 2016, 3, 174.
CrossRef Google scholar
[2]
H. Liu, T. Xu, Q. Liang, Q. Zhao, D. Zhao, C. Si, Adv. Compos. Hybrid Mater. 2022, 5, 1168.
CrossRef Google scholar
[3]
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu, M. Zhang, H. Du, C. Si, K. Zhang, Adv. Funct. Mater. 2022, 32, 2113082.
[4]
Q. Liang, J. Wan, P. Ji, D. Zhang, N. Sheng, S. Chen, H. Wang, Chem. Eng. J. 2022, 427, 131904.
CrossRef Google scholar
[5]
T. Selvaraj, V. Perumal, S. F. Khor, L. S. Anthony, S. C. B. Gopinath, N. M. Mohamed, Mater. Res. Bull. 2020, 126, 110839.
CrossRef Google scholar
[6]
Z. Gao, Y. Zhang, N. Song, X. Li, Mater. Res. Lett. 2017, 5, 69.
[7]
D. S. Cha, M. S. Chinnan, Crit. Rev. Food Sci. Nutr. 2004, 44, 223.
CrossRef Google scholar
[8]
T. Xu, H. Du, H. Liu, W. Liu, X. Zhang, C. Si, P. Liu, K. Zhang, Adv. Mater. 2021, 33, 2101368.
[9]
C.-L. Si, J.-K. Kim, Y.-S. Bae, S.-M. Li, Planta Med. 2009, 75, 1165-1167.
CrossRef Google scholar
[10]
M. Klein, E. Poverenov, J. Sci. Food Agric. 2020, 100, 2337.
CrossRef Google scholar
[11]
X. Zhu, G. Jiang, G. Wang, Y. Zhu, W. Cheng, S. Zeng, J. Zhou, G. Xu, D. Zhao, Resour. Chem. Mater. 2023, 2, 177.
CrossRef Google scholar
[12]
M. Zhang, H. Du, K. Liu, S. Nie, T. Xu, X. Zhang, C. Si, Adv. Compos. Hybrid Mater. 2021, 4, 865.
CrossRef Google scholar
[13]
Y. Wang, K. Liu, M. Zhang, T. Xu, H. Du, B. Pang, C. Si, Carbohydr. Polym. 2023, 313, 120851.
CrossRef Google scholar
[14]
T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang, M. Zhang, C. Si, Adv. Compos. Hybrid Mater. 2023, 6, 108.
[15]
E. S. Appiah, P. Dzikunu, N. Mahadeen, D. N. Ampong, K. Mensah-Darkwa, A. Kumar, R. K. Gupta, M. Adom-Asamoah, Molecules 2022, 27, 6556.
CrossRef Google scholar
[16]
Y. Zhang, X. Liu, S. Wang, L. Li, S. Dou, Adv. Energy Mater. 2017, 7, 1700592.
[17]
M. M. Pérez-Madrigal, F. Estrany, E. Armelin, D. D. Díaz, C. Alemán, J. Mater. Chem. A 2016, 4, 1792.
CrossRef Google scholar
[18]
W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang, Biomater. Sci. 2019, 7, 843.
CrossRef Google scholar
[19]
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu, H. Liu, L. Dai, X. Zhang, C. Si, H. Du, K. Zhang, Energy Storage Mater. 2022, 48, 244.
CrossRef Google scholar
[20]
L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Energy Environ. Sci. 2013, 6, 3331.
CrossRef Google scholar
[21]
L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Adv. Mater. 2013, 25, 4746.
[22]
Q. Meng, H. Wu, Y. Meng, K. Xie, Z. Wei, Z. Guo, Adv. Mater. 2014, 26, 4100.
CrossRef Google scholar
[23]
P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong, A. Umar, Nanoscale 2014, 6, 12120.
CrossRef Google scholar
[24]
B. Anothumakkool, R. Soni, S. N. Bhange, S. Kurungot, Energy Environ. Sci. 2015, 8, 1339.
CrossRef Google scholar
[25]
B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Nano Energy 2016, 27, 482.
CrossRef Google scholar
[26]
B. You, F. Kang, P. Yin, Q. Zhang, Carbon 2016, 103, 9.
CrossRef Google scholar
[27]
J. Yi, Y. Qing, C. Wu, Y. Zeng, Y. Wu, X. Lu, Y. Tong, J. Power Sources 2017, 351, 130.
CrossRef Google scholar
[28]
Q. Ding, X. Xu, Y. Yue, C. Mei, C. Huang, S. Jiang, Q. Wu, J. Han, ACS Appl. Mater. Interfaces 2018, 10, 27987.
CrossRef Google scholar
[29]
W. Tian, A. VahidMohammadi, M. S. Reid, Z. Wang, L. Ouyang, J. Erlandsson, T. Pettersson, L. Wagberg, M. Beidaghi, M. M. Hamedi, Adv. Mater. 2019, 31, 1902977.
[30]
S. Jiao, A. Zhou, M. Wu, H. Hu, Adv. Sci. 2019, 6, 1900529.
[31]
Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu, L. Zhong, X. Peng, Adv. Funct. Mater. 2020, 30, 1910292.
[32]
L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E. S. Hosseini, R. Dahiya, Adv. Mater. 2020, 32, 1907254.
[33]
I. Rabani, J. Yoo, H.-S. Kim, D. V. Lam, S. Hussain, K. Karuppasamy, Y.-S. Seo, Nanoscale 2021, 13, 355.
CrossRef Google scholar
[34]
W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang, X. Zhou, Chem. Eng. J. 2021, 413, 127524.
CrossRef Google scholar
[35]
H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang, X. Zhang, B. Li, C. Si, Chem. Eng. J. 2022, 428, 131994.
CrossRef Google scholar
[36]
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan, W. Liu, L. Dai, M. Zhang, Y. Wang, C. Si, H. Du, K. Zhang, Nano-Micro Lett. 2023, 15, 98.
[37]
R. Vinodh, Y. Sasikumar, H.-J. Kim, R. Atchudan, M. Yi, J. Ind. Eng. Chem. 2021, 104, 155.
CrossRef Google scholar
[38]
M. A. Azeez, O. C. Olatunde, IOSR J. Appl. Chem. 2018, 14.
[39]
A. S. Rathore, R. D. Gupta, Enzyme Res. 2015, 2015, 1.
CrossRef Google scholar
[40]
W. Liu, H. Du, H. Liu, H. Xie, T. Xu, X. Zhao, Y. Liu, X. Zhang, C. Si, ACS Sustain. Chem. Eng. 2020, 8, 16691.
CrossRef Google scholar
[41]
W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu, B. Pang, T. Xu, C. Si, Adv. Compos. Hybrid Mater. 2023, 6, 149.
[42]
K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang, H. Liu, X. Zhang, C. Si, Green Chem. 2021, 23, 9723.
CrossRef Google scholar
[43]
M. G. Saborío, P. Svelic, J. Casanovas, G. Ruano, M. M. Pérez-Madrigal, L. Franco, J. Torras, F. Estrany, C. Alemán, Eur. Polym. J. 2019, 118, 347.
CrossRef Google scholar
[44]
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, B. Pang, X. Zhang, C. Si, K. Zhang, Nano-Micro Lett. 2022, 14, 104.
[45]
Y. Wang, T. Xu, K. Liu, M. Zhang, Q. Zhao, Q. Liang, C. Si, Ind. Crops Prod. 2023, 204, 117378.
CrossRef Google scholar
[46]
Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479.
CrossRef Google scholar
[47]
K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, R. Zhang, H. Li, H. Xie, X. Zhang, M. Ma, C. Si, Carbohydr. Polym. 2021, 259, 117740.
CrossRef Google scholar
[48]
H. Du, W. Liu, M. Zhang, C. Si, X. Zhang, B. Li, Carbohydr. Polym. 2019, 209, 130-144.
CrossRef Google scholar
[49]
K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou, S. Zhang, S. Ni, T. Xu, H. Du, C. Si, Adv. Compos. Hybrid Mater. 2022, 5, 1078.
CrossRef Google scholar
[50]
M. Zhang, Y. Wang, K. Liu, Y. Liu, T. Xu, H. Du, C. Si, Carbohydr. Polym. 2023, 305, 120567.
CrossRef Google scholar
[51]
W. Liu, S. Zhang, K. Liu, H. Yang, Q. Lin, T. Xu, X. Song, H. Du, L. Bai, S. Yao, C. Si, J. Cleaner Prod. 2023, 384, 135582.
CrossRef Google scholar
[52]
D. Lin, Z. Liu, R. Shen, S. Chen, X. Yang, J. Biol. Macromol. 2020, 158, 1007.
CrossRef Google scholar
[53]
S. Gorgieva6, Processes 2020, 8, 624.
[54]
K. Ludwicka, M. Kaczmarek, A. Białkowska, Polymers 2020, 12, 2209.
CrossRef Google scholar
[55]
R. R. Singhania, A. K. Patel, Y.-S. Tseng, V. Kumar, C.-W. Chen, D. Haldar, J. K. Saini, C.-D. Dong, Bioresour. Technol. 2022, 344, 126343.
CrossRef Google scholar
[56]
Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Adv. Energy Mater. 2017, 7, 1700130.
[57]
W. Chen, H. Yu, S.-Y. Lee, T. Wei, J. Li, Z. Fan, Chem. Soc. Rev. 2018, 47, 2837.
CrossRef Google scholar
[58]
S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M. J. Buehler, D. L. Kaplan, Prog. Polym. Sci. 2018, 85, 1.
CrossRef Google scholar
[59]
K. Y. Lee, D. J. Mooney, Prog. Polym. Sci. 2012, 37, 106.
CrossRef Google scholar
[60]
K. Wickramaarachchi, M. M. Sundaram, D. J. Henry, X. Gao, ACS Appl. Energy Mater. 2021, 4, 7040.
CrossRef Google scholar
[61]
C. Araki, Bull. Chem. Soc. Jpn. 1956, 29, 543.
CrossRef Google scholar
[62]
T. Yan, Y. Zou, X. Zhang, D. Li, X. Guo, D. Yang, ACS Appl. Mater. Interfaces 2021, 13, 9856.
CrossRef Google scholar
[63]
S. Jin, I. Ryu, G. Lim, S. Yim, J. Electrochem. Sci. Technol. 2020, 11, 406.
[64]
A. Willfahrt, E. Steiner, J. Hötzel, X. Crispin, Appl. Phys. A 2019, 125, 1.
[65]
R. Thakur, P. Pristijono, C. J. Scarlett, M. Bowyer, S. P. Singh, Q. V. Vuong, Int. J. Biol. Macromol. 2019, 132, 1079.
CrossRef Google scholar
[66]
N. N. Loganathan, V. Perumal, B. R. Pandian, R. Atchudan, T. N. J. I. Edison, M. Ovinis, J. Energy Storage 2022, 49, 104149.
CrossRef Google scholar
[67]
J. Xu, X. Zhou, M. Chen, S. Shi, Y. Cao, Microporous Mesoporous Mater. 2018, 265, 258.
CrossRef Google scholar
[68]
S. Kumari, R. Kishor, in Handbook of Chitin and Chitosan (Eds.: S. Gopi,, S. Thomas,, A. Pius,), Elsevier 2020, pp.1-33.
[69]
A. K. Samantara, S. Ratha, Materials Development for Active/Passive Components of a Supercapacitor, Vol. 14, Springer 2018.
[70]
J. R. Miller, P. Simon, Science 2008, 321, 651.
CrossRef Google scholar
[71]
I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Energy Sci. Eng. 2015, 3, 2.
CrossRef Google scholar
[72]
Y. Wu, F. Ran, J. Power Sources 2017, 344, 1.
CrossRef Google scholar
[73]
X. Chen, R. Paul, L. Dai, Natl. Sci. Rev. 2017, 4, 453.
CrossRef Google scholar
[74]
B. Krishna Roy, I. Tahmid, T. U. Rashid, J. Mater. Chem. A 2021, 9, 17592.
CrossRef Google scholar
[75]
D. Dong, Y. Xiao, Chem. Eng. J. 2023, 470, 144441.
CrossRef Google scholar
[76]
L. Yang, D. Wu, T. Wang, D. Jia, ACS Appl. Mater. Interfaces 2020, 12, 18692.
CrossRef Google scholar
[77]
S. Selvam, J.-H. Yim, J. Energy Storage 2021, 43, 103300.
CrossRef Google scholar
[78]
H. H. Hsu, A. Khosrozadeh, B. Li, G. Luo, M. Xing, W. Zhong, ACS Sustain. Chem. Eng. 2019, 7, 4766.
CrossRef Google scholar
[79]
A. Abraham, V. R. Jothi, J. Lee, S.-C. Yi, B.-I. Sang, Cellulose 2020, 27, 8135.
CrossRef Google scholar
[80]
Q. Fu, Y. Wang, S. Liang, Q. Liu, C. Yao, J. Solid State Electrochem. 2020, 24, 533.
CrossRef Google scholar
[81]
L. Xiao, H. Qi, K. Qu, C. Shi, Y. Cheng, Z. Sun, B. Yuan, Z. Huang, D. Pan, Z. Guo, Adv. Compos. Hybrid Mater. 2021, 4, 306.
CrossRef Google scholar
[82]
H. Huang, X. Zeng, W. Li, H. Wang, Q. Wang, Y. Yang, J. Mater. Chem. A 2014, 2, 16516.
CrossRef Google scholar
[83]
Z. Zhou, F. Chen, T. Kuang, L. Chang, J. Yang, P. Fan, Z. Zhao, M. Zhong, Electrochim. Acta 2018, 274, 288.
CrossRef Google scholar
[84]
F. Li, X. Wang, R. Sun, J. Mater. Chem. A 2017, 5, 20643.
CrossRef Google scholar
[85]
L. Ma, T. Zhao, F. Xua, T. You, X. Zhang, Chem. Eng. J. 2021, 405, 126694.
CrossRef Google scholar
[86]
L. Pu, J. Zhang, N. K. L. Jiresse, Y. Gao, H. Zhou, N. Naik, P. Gao, Z. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 356.
CrossRef Google scholar
[87]
G. Zhou, M.-C. Li, C. Liu, Q. Wu, C. Mei, Adv. Funct. Mater. 2022, 32, 2109593.
[88]
R. Chen, X. Li, Q. Huang, H. Ling, Y. Yang, X. Wang, Chem. Eng. J. 2021, 412, 128755.
CrossRef Google scholar
[89]
Z. Peng, W. Zhong, ACS Sustain. Chem. Eng. 2020, 8, 7879.
CrossRef Google scholar
[90]
N. Kumar, R. T. Ginting, J.-W. Kang, Electrochim. Acta 2018, 270, 37.
CrossRef Google scholar
[91]
Y. Liu, B. Weng, J. M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G. G. Wallace, J. Chen. Sci. Rep. 2015, 5, 17045.
[92]
J. Zeng, L. Dong, W. Sha, L. Wei, X. Guo, Chem. Eng. J. 2020, 383, 123098.
CrossRef Google scholar
[93]
H. Wang, S. K. Biswas, S. Zhu, Y. Lu, Y. Yue, J. Han, X. Xu, Q. Wu, H. Xiao, Nanomaterials 2020, 10, 112.
CrossRef Google scholar
[94]
R. Chen, Y. Yang, Q. Huang, H. Ling, X. Li, J. Ren, K. Zhang, R. Sun, X. Wang, Energy Storage Mater. 2020, 32, 208.
CrossRef Google scholar
[95]
Y. Shu, Q. Bai, G. Fu, Q. Xiong, C. Li, H. Ding, Y. Shen, H. Uyama, Carbohydr. Polym. 2020, 227, 115346.
CrossRef Google scholar
[96]
Y. Jiang, J. Li, Z. Jiang, M. Shi, R. Sheng, Z. Liu, S. Zhang, Y. Cao, T. Wei, Z. Fan, Carbon 2021, 175, 281.
CrossRef Google scholar
[97]
Q. Wu, J. Hu, S. Cao, S. Yu, L. Huang, Int. J. Biol. Macromol. 2020, 155, 131.
CrossRef Google scholar
[98]
Y. Xi, Z. Xiao, H. Lv, H. Sun, S. Zhai, Q. An, J. Colloid Interface Sci. 2023, 630, 525.
CrossRef Google scholar
[99]
Y. Wang, R. Liu, Y. Tian, Z. Sun, Z. Huang, X. Wu, B. Li, Chem. Eng. J. 2020, 384, 123263.
CrossRef Google scholar
[100]
M. Luo, Z. Zhu, K. Yang, P. Yang, Y. Miao, M. Chen, W. Chen, X. Zhou, Sci. Total Environ. 2020, 747, 141923.
CrossRef Google scholar
[101]
X. Wan, F. Shen, J. Hu, M. Huang, L. Zhao, Y. Zeng, D. Tian, G. Yang, Y. Zhang, Int. J. Biol. Macromol. 2021, 180, 51.
CrossRef Google scholar
[102]
N. Thongsai, K. Hrimchum, D. Aussawasathien, Sustain. Mater. Technol. 2021, 30, e00341.
CrossRef Google scholar
[103]
S. Guo, H. Li, X. Zhang, H. Nawaz, S. Chen, X. Zhang, F. Xu, Carbon 2021, 174, 500.
CrossRef Google scholar
[104]
K. Li, P. Li, Z. Sun, J. Shi, M. Huang, J. Chen, S. Liu, Z. Shi, H. Wang, Green Energy Environ. 2023, 8, 1091-1101.
CrossRef Google scholar
[105]
P. Zhang, J. Li, D. Yang, R. A. Soomro, B. Xu, Adv. Funct. Mater. 2023, 33, 2209918.
[106]
A. Sangili, B. Unnikrishnan, A. Nain, Y.-J. Hsu, R.-S. Wu, C.-C. Huang, H.-T. Chang, Energy Storage Mater. 2022, 53, 51.
CrossRef Google scholar
[107]
C. Zhao, Y. Wang, J. Zheng, S. Xu, P. Rui, C. Zhao, J. Power Sources 2022, 521, 230942.
CrossRef Google scholar
[108]
Z. Zhai, Y. Zheng, T. Du, Z. Tian, B. Ren, Y. Xu, S. Wang, L. Zhang, Z. Liu, Ceram. Int. 2021, 47, 22080.
CrossRef Google scholar
[109]
H. Wang, H. Wang, F. Ruan, Q. Feng, Y. Wei, J. Fang, Mater. Chem. Phys. 2023, 293, 126896.
CrossRef Google scholar
[110]
M. Zhang, J. Cheng, L. Zhang, Y. Li, M. Chen, Y. Chen, Z. Shen, ACS Sustain. Chem. Eng. 2020, 8, 3637.
CrossRef Google scholar
[111]
E. Armelin, M. M Perez-Madrigal, C. Aleman, D. Diaz Diaz, J. Mater. Chem. A 2016, 4, 8952.
[112]
Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang, H. Li, L. Ma, F. Mo, C. Zhi, Energy Storage Mater. 2019, 23, 636.
CrossRef Google scholar
[113]
J. Zhao, Y. Chen, Y. Yao, Z.-R. Tong, P.-W. Li, Z.-M. Yang, S.-H. Jin, J. Power Sources 2018, 378, 603.
CrossRef Google scholar
[114]
H. H. Hsu, Y. Liu, Y. Wang, B. Li, G. Luo, M. Xing, W. Zhong, ACS Sustain. Chem. Eng. 2020, 8, 6935.
CrossRef Google scholar
[115]
H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang, L. Pan, M. Xu, Small 2021, 17, 2006807.
[116]
D. P. Dubal, N. R. Chodankar, D.-H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 2018, 47, 2065.
CrossRef Google scholar
[117]
Q. Zhang, L. Zhao, H. Yang, L. Kong, F. Ran, J. Membr. Sci. 2021, 629, 119083.
CrossRef Google scholar
[118]
C.-H. Lin, P.-H. Wang, W.-N. Lee, W.-C. Li, T.-C. Wen, J. Power Sources 2021, 494, 229736.
CrossRef Google scholar
[119]
X. Li, L. Yuan, R. Liu, H. He, J. Hao, Y. Lu, Y. Wang, G. Liang, G. Yuan, Z. Guo, Adv. Energy Mater. 2021, 11, 2003010.
[120]
Z. Yang, L. Han, X. Fu, Y. Wang, H. Huang, M. Xu, Adv. Compos. Hybrid Mater. 2022, 5, 1876.
CrossRef Google scholar
[121]
J. Menzel, E. Frąckowiak, K. Fic, Electrochim. Acta 2020, 332, 135435.
CrossRef Google scholar
[122]
L. He, J. Wang, S. Weng, X. Jiang, Carbohydr. Polym. 2023, 306, 120587.
CrossRef Google scholar
[123]
J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye, X. Zhang, Y. Zheng, L. Hou, H. Liu, X. Jiang, J. Mater. Chem. A 2021, 9, 18406.
CrossRef Google scholar
[124]
C. Li, G. Liu, S. Wang, D. Wang, F. Liu, Y. Cui, D. Liang, X. Wang, Z. Yong, Y. Chi, J. Energy Storage 2022, 46, 103918.
CrossRef Google scholar
[125]
D. Kasprzak, C. C Mayorga-Martinez, O. Alduhaish, M. Pumera, Energy Technol. 2023, 11, 2201103.
[126]
H. H. Rana, J. H. Park, G. S. Gund, H. S. Park, Energy Storage Mater. 2020, 25, 70.
CrossRef Google scholar
[127]
H. Peng, X. Gao, K. Sun, X. Xie, G. Ma, X. Zhou, Z. Lei, Chem. Eng. J. 2021, 422, 130353.
CrossRef Google scholar
[128]
N. M. Badawi, M. Bhatia, S. Ramesh, K. Ramesh, M. Kuniyil, M. R. Shaik, M. Khan, B. Shaik, S. F. Adil, Polymers 2023, 15, 571.
CrossRef Google scholar
[129]
A. K. Mondal, D. Xu, S. Wu, Q. Zou, W. Lin, F. Huang, Y. Ni, Int. J. Biol. Macromol. 2022, 214, 77.
CrossRef Google scholar
[130]
W. Liu, H. Du, M. Zhang, K. Liu, H. Liu, H. Xie, X. Zhang, C. Si, ACS Sustainable Chem. Eng. 2020, 8, 7536-7562.
CrossRef Google scholar
[131]
W. Li, H. Sun, G. Wang, W. Sui, L. Dai, C. Si, Green Chem., 2023, 25, 2241-2261.
CrossRef Google scholar
[132]
W. Li, G. Wang, W. Sui, T. Xu, Z. Li, A. M. Parvez, C. Si, Carbon, 2022, 196, 819-827.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/