Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives

Yaxuan Wang , Ting Xu , Kun Liu , Meng Zhang , Xu-Min Cai , Chuanling Si

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 428

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :428 DOI: 10.1002/agt2.428
REVIEW

Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives

Author information +
History +
PDF

Abstract

Supercapacitors exhibit considerable potential as energy storage devices due to their high power density, fast charging and discharging abilities, long cycle life, and ecofriendliness. With the increasing environmental concerns associated with synthetic compounds, the use of environment friendly biopolymers to replace conventional petroleum-based materials has been widely studied. Biomass-based materials are biodegradable, renewable, environment friendly and non-toxic. The unique hierarchical nanostructure, excellent mechanical properties and hydrophilicity allow them to be used to create functional conductive materials with precisely controlled structures and different properties. In this review, the latest development of biomass-based supercapacitor materials is reviewed and discussed. This paper describes the physical and chemical properties of various biopolymers and their impact on supercapacitors, as well as the classification and basic principles of supercapacitors. Then, a comprehensive discussion is presented on the utilization of biomass-based materials in supercapacitors and their recent applications across a range of supercapacitor devices. Finally, an overview of the future prospects and challenges pertaining to the utilization of biomass-based materials in supercapacitors is provided.

Keywords

biomass / electrodes / electrolyte / energy storage / supercapacitor

Cite this article

Download citation ▾
Yaxuan Wang, Ting Xu, Kun Liu, Meng Zhang, Xu-Min Cai, Chuanling Si. Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate, 2024, 5(1): 428 DOI:10.1002/agt2.428

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Admassie, F. N. Ajjan, A. Elfwing, O. Inganäs, Mater. Horiz. 2016, 3, 174.

[2]

H. Liu, T. Xu, Q. Liang, Q. Zhao, D. Zhao, C. Si, Adv. Compos. Hybrid Mater. 2022, 5, 1168.

[3]

H. Liu, T. Xu, C. Cai, K. Liu, W. Liu, M. Zhang, H. Du, C. Si, K. Zhang, Adv. Funct. Mater. 2022, 32, 2113082.

[4]

Q. Liang, J. Wan, P. Ji, D. Zhang, N. Sheng, S. Chen, H. Wang, Chem. Eng. J. 2022, 427, 131904.

[5]

T. Selvaraj, V. Perumal, S. F. Khor, L. S. Anthony, S. C. B. Gopinath, N. M. Mohamed, Mater. Res. Bull. 2020, 126, 110839.

[6]

Z. Gao, Y. Zhang, N. Song, X. Li, Mater. Res. Lett. 2017, 5, 69.

[7]

D. S. Cha, M. S. Chinnan, Crit. Rev. Food Sci. Nutr. 2004, 44, 223.

[8]

T. Xu, H. Du, H. Liu, W. Liu, X. Zhang, C. Si, P. Liu, K. Zhang, Adv. Mater. 2021, 33, 2101368.

[9]

C.-L. Si, J.-K. Kim, Y.-S. Bae, S.-M. Li, Planta Med. 2009, 75, 1165-1167.

[10]

M. Klein, E. Poverenov, J. Sci. Food Agric. 2020, 100, 2337.

[11]

X. Zhu, G. Jiang, G. Wang, Y. Zhu, W. Cheng, S. Zeng, J. Zhou, G. Xu, D. Zhao, Resour. Chem. Mater. 2023, 2, 177.

[12]

M. Zhang, H. Du, K. Liu, S. Nie, T. Xu, X. Zhang, C. Si, Adv. Compos. Hybrid Mater. 2021, 4, 865.

[13]

Y. Wang, K. Liu, M. Zhang, T. Xu, H. Du, B. Pang, C. Si, Carbohydr. Polym. 2023, 313, 120851.

[14]

T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang, M. Zhang, C. Si, Adv. Compos. Hybrid Mater. 2023, 6, 108.

[15]

E. S. Appiah, P. Dzikunu, N. Mahadeen, D. N. Ampong, K. Mensah-Darkwa, A. Kumar, R. K. Gupta, M. Adom-Asamoah, Molecules 2022, 27, 6556.

[16]

Y. Zhang, X. Liu, S. Wang, L. Li, S. Dou, Adv. Energy Mater. 2017, 7, 1700592.

[17]

M. M. Pérez-Madrigal, F. Estrany, E. Armelin, D. D. Díaz, C. Alemán, J. Mater. Chem. A 2016, 4, 1792.

[18]

W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang, Biomater. Sci. 2019, 7, 843.

[19]

T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu, H. Liu, L. Dai, X. Zhang, C. Si, H. Du, K. Zhang, Energy Storage Mater. 2022, 48, 244.

[20]

L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Energy Environ. Sci. 2013, 6, 3331.

[21]

L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Adv. Mater. 2013, 25, 4746.

[22]

Q. Meng, H. Wu, Y. Meng, K. Xie, Z. Wei, Z. Guo, Adv. Mater. 2014, 26, 4100.

[23]

P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong, A. Umar, Nanoscale 2014, 6, 12120.

[24]

B. Anothumakkool, R. Soni, S. N. Bhange, S. Kurungot, Energy Environ. Sci. 2015, 8, 1339.

[25]

B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Nano Energy 2016, 27, 482.

[26]

B. You, F. Kang, P. Yin, Q. Zhang, Carbon 2016, 103, 9.

[27]

J. Yi, Y. Qing, C. Wu, Y. Zeng, Y. Wu, X. Lu, Y. Tong, J. Power Sources 2017, 351, 130.

[28]

Q. Ding, X. Xu, Y. Yue, C. Mei, C. Huang, S. Jiang, Q. Wu, J. Han, ACS Appl. Mater. Interfaces 2018, 10, 27987.

[29]

W. Tian, A. VahidMohammadi, M. S. Reid, Z. Wang, L. Ouyang, J. Erlandsson, T. Pettersson, L. Wagberg, M. Beidaghi, M. M. Hamedi, Adv. Mater. 2019, 31, 1902977.

[30]

S. Jiao, A. Zhou, M. Wu, H. Hu, Adv. Sci. 2019, 6, 1900529.

[31]

Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu, L. Zhong, X. Peng, Adv. Funct. Mater. 2020, 30, 1910292.

[32]

L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E. S. Hosseini, R. Dahiya, Adv. Mater. 2020, 32, 1907254.

[33]

I. Rabani, J. Yoo, H.-S. Kim, D. V. Lam, S. Hussain, K. Karuppasamy, Y.-S. Seo, Nanoscale 2021, 13, 355.

[34]

W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang, X. Zhou, Chem. Eng. J. 2021, 413, 127524.

[35]

H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang, X. Zhang, B. Li, C. Si, Chem. Eng. J. 2022, 428, 131994.

[36]

T. Xu, Q. Song, K. Liu, H. Liu, J. Pan, W. Liu, L. Dai, M. Zhang, Y. Wang, C. Si, H. Du, K. Zhang, Nano-Micro Lett. 2023, 15, 98.

[37]

R. Vinodh, Y. Sasikumar, H.-J. Kim, R. Atchudan, M. Yi, J. Ind. Eng. Chem. 2021, 104, 155.

[38]

M. A. Azeez, O. C. Olatunde, IOSR J. Appl. Chem. 2018, 14.

[39]

A. S. Rathore, R. D. Gupta, Enzyme Res. 2015, 2015, 1.

[40]

W. Liu, H. Du, H. Liu, H. Xie, T. Xu, X. Zhao, Y. Liu, X. Zhang, C. Si, ACS Sustain. Chem. Eng. 2020, 8, 16691.

[41]

W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu, B. Pang, T. Xu, C. Si, Adv. Compos. Hybrid Mater. 2023, 6, 149.

[42]

K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang, H. Liu, X. Zhang, C. Si, Green Chem. 2021, 23, 9723.

[43]

M. G. Saborío, P. Svelic, J. Casanovas, G. Ruano, M. M. Pérez-Madrigal, L. Franco, J. Torras, F. Estrany, C. Alemán, Eur. Polym. J. 2019, 118, 347.

[44]

W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang, T. Xu, B. Pang, X. Zhang, C. Si, K. Zhang, Nano-Micro Lett. 2022, 14, 104.

[45]

Y. Wang, T. Xu, K. Liu, M. Zhang, Q. Zhao, Q. Liang, C. Si, Ind. Crops Prod. 2023, 204, 117378.

[46]

Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479.

[47]

K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, R. Zhang, H. Li, H. Xie, X. Zhang, M. Ma, C. Si, Carbohydr. Polym. 2021, 259, 117740.

[48]

H. Du, W. Liu, M. Zhang, C. Si, X. Zhang, B. Li, Carbohydr. Polym. 2019, 209, 130-144.

[49]

K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou, S. Zhang, S. Ni, T. Xu, H. Du, C. Si, Adv. Compos. Hybrid Mater. 2022, 5, 1078.

[50]

M. Zhang, Y. Wang, K. Liu, Y. Liu, T. Xu, H. Du, C. Si, Carbohydr. Polym. 2023, 305, 120567.

[51]

W. Liu, S. Zhang, K. Liu, H. Yang, Q. Lin, T. Xu, X. Song, H. Du, L. Bai, S. Yao, C. Si, J. Cleaner Prod. 2023, 384, 135582.

[52]

D. Lin, Z. Liu, R. Shen, S. Chen, X. Yang, J. Biol. Macromol. 2020, 158, 1007.

[53]

S. Gorgieva6, Processes 2020, 8, 624.

[54]

K. Ludwicka, M. Kaczmarek, A. Białkowska, Polymers 2020, 12, 2209.

[55]

R. R. Singhania, A. K. Patel, Y.-S. Tseng, V. Kumar, C.-W. Chen, D. Haldar, J. K. Saini, C.-D. Dong, Bioresour. Technol. 2022, 344, 126343.

[56]

Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Adv. Energy Mater. 2017, 7, 1700130.

[57]

W. Chen, H. Yu, S.-Y. Lee, T. Wei, J. Li, Z. Fan, Chem. Soc. Rev. 2018, 47, 2837.

[58]

S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M. J. Buehler, D. L. Kaplan, Prog. Polym. Sci. 2018, 85, 1.

[59]

K. Y. Lee, D. J. Mooney, Prog. Polym. Sci. 2012, 37, 106.

[60]

K. Wickramaarachchi, M. M. Sundaram, D. J. Henry, X. Gao, ACS Appl. Energy Mater. 2021, 4, 7040.

[61]

C. Araki, Bull. Chem. Soc. Jpn. 1956, 29, 543.

[62]

T. Yan, Y. Zou, X. Zhang, D. Li, X. Guo, D. Yang, ACS Appl. Mater. Interfaces 2021, 13, 9856.

[63]

S. Jin, I. Ryu, G. Lim, S. Yim, J. Electrochem. Sci. Technol. 2020, 11, 406.

[64]

A. Willfahrt, E. Steiner, J. Hötzel, X. Crispin, Appl. Phys. A 2019, 125, 1.

[65]

R. Thakur, P. Pristijono, C. J. Scarlett, M. Bowyer, S. P. Singh, Q. V. Vuong, Int. J. Biol. Macromol. 2019, 132, 1079.

[66]

N. N. Loganathan, V. Perumal, B. R. Pandian, R. Atchudan, T. N. J. I. Edison, M. Ovinis, J. Energy Storage 2022, 49, 104149.

[67]

J. Xu, X. Zhou, M. Chen, S. Shi, Y. Cao, Microporous Mesoporous Mater. 2018, 265, 258.

[68]

S. Kumari, R. Kishor, in Handbook of Chitin and Chitosan (Eds.: S. Gopi, S. Thomas, A. Pius,), Elsevier 2020, pp.1-33.

[69]

A. K. Samantara, S. Ratha, Materials Development for Active/Passive Components of a Supercapacitor, Vol. 14, Springer 2018.

[70]

J. R. Miller, P. Simon, Science 2008, 321, 651.

[71]

I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Energy Sci. Eng. 2015, 3, 2.

[72]

Y. Wu, F. Ran, J. Power Sources 2017, 344, 1.

[73]

X. Chen, R. Paul, L. Dai, Natl. Sci. Rev. 2017, 4, 453.

[74]

B. Krishna Roy, I. Tahmid, T. U. Rashid, J. Mater. Chem. A 2021, 9, 17592.

[75]

D. Dong, Y. Xiao, Chem. Eng. J. 2023, 470, 144441.

[76]

L. Yang, D. Wu, T. Wang, D. Jia, ACS Appl. Mater. Interfaces 2020, 12, 18692.

[77]

S. Selvam, J.-H. Yim, J. Energy Storage 2021, 43, 103300.

[78]

H. H. Hsu, A. Khosrozadeh, B. Li, G. Luo, M. Xing, W. Zhong, ACS Sustain. Chem. Eng. 2019, 7, 4766.

[79]

A. Abraham, V. R. Jothi, J. Lee, S.-C. Yi, B.-I. Sang, Cellulose 2020, 27, 8135.

[80]

Q. Fu, Y. Wang, S. Liang, Q. Liu, C. Yao, J. Solid State Electrochem. 2020, 24, 533.

[81]

L. Xiao, H. Qi, K. Qu, C. Shi, Y. Cheng, Z. Sun, B. Yuan, Z. Huang, D. Pan, Z. Guo, Adv. Compos. Hybrid Mater. 2021, 4, 306.

[82]

H. Huang, X. Zeng, W. Li, H. Wang, Q. Wang, Y. Yang, J. Mater. Chem. A 2014, 2, 16516.

[83]

Z. Zhou, F. Chen, T. Kuang, L. Chang, J. Yang, P. Fan, Z. Zhao, M. Zhong, Electrochim. Acta 2018, 274, 288.

[84]

F. Li, X. Wang, R. Sun, J. Mater. Chem. A 2017, 5, 20643.

[85]

L. Ma, T. Zhao, F. Xua, T. You, X. Zhang, Chem. Eng. J. 2021, 405, 126694.

[86]

L. Pu, J. Zhang, N. K. L. Jiresse, Y. Gao, H. Zhou, N. Naik, P. Gao, Z. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 356.

[87]

G. Zhou, M.-C. Li, C. Liu, Q. Wu, C. Mei, Adv. Funct. Mater. 2022, 32, 2109593.

[88]

R. Chen, X. Li, Q. Huang, H. Ling, Y. Yang, X. Wang, Chem. Eng. J. 2021, 412, 128755.

[89]

Z. Peng, W. Zhong, ACS Sustain. Chem. Eng. 2020, 8, 7879.

[90]

N. Kumar, R. T. Ginting, J.-W. Kang, Electrochim. Acta 2018, 270, 37.

[91]

Y. Liu, B. Weng, J. M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G. G. Wallace, J. Chen. Sci. Rep. 2015, 5, 17045.

[92]

J. Zeng, L. Dong, W. Sha, L. Wei, X. Guo, Chem. Eng. J. 2020, 383, 123098.

[93]

H. Wang, S. K. Biswas, S. Zhu, Y. Lu, Y. Yue, J. Han, X. Xu, Q. Wu, H. Xiao, Nanomaterials 2020, 10, 112.

[94]

R. Chen, Y. Yang, Q. Huang, H. Ling, X. Li, J. Ren, K. Zhang, R. Sun, X. Wang, Energy Storage Mater. 2020, 32, 208.

[95]

Y. Shu, Q. Bai, G. Fu, Q. Xiong, C. Li, H. Ding, Y. Shen, H. Uyama, Carbohydr. Polym. 2020, 227, 115346.

[96]

Y. Jiang, J. Li, Z. Jiang, M. Shi, R. Sheng, Z. Liu, S. Zhang, Y. Cao, T. Wei, Z. Fan, Carbon 2021, 175, 281.

[97]

Q. Wu, J. Hu, S. Cao, S. Yu, L. Huang, Int. J. Biol. Macromol. 2020, 155, 131.

[98]

Y. Xi, Z. Xiao, H. Lv, H. Sun, S. Zhai, Q. An, J. Colloid Interface Sci. 2023, 630, 525.

[99]

Y. Wang, R. Liu, Y. Tian, Z. Sun, Z. Huang, X. Wu, B. Li, Chem. Eng. J. 2020, 384, 123263.

[100]

M. Luo, Z. Zhu, K. Yang, P. Yang, Y. Miao, M. Chen, W. Chen, X. Zhou, Sci. Total Environ. 2020, 747, 141923.

[101]

X. Wan, F. Shen, J. Hu, M. Huang, L. Zhao, Y. Zeng, D. Tian, G. Yang, Y. Zhang, Int. J. Biol. Macromol. 2021, 180, 51.

[102]

N. Thongsai, K. Hrimchum, D. Aussawasathien, Sustain. Mater. Technol. 2021, 30, e00341.

[103]

S. Guo, H. Li, X. Zhang, H. Nawaz, S. Chen, X. Zhang, F. Xu, Carbon 2021, 174, 500.

[104]

K. Li, P. Li, Z. Sun, J. Shi, M. Huang, J. Chen, S. Liu, Z. Shi, H. Wang, Green Energy Environ. 2023, 8, 1091-1101.

[105]

P. Zhang, J. Li, D. Yang, R. A. Soomro, B. Xu, Adv. Funct. Mater. 2023, 33, 2209918.

[106]

A. Sangili, B. Unnikrishnan, A. Nain, Y.-J. Hsu, R.-S. Wu, C.-C. Huang, H.-T. Chang, Energy Storage Mater. 2022, 53, 51.

[107]

C. Zhao, Y. Wang, J. Zheng, S. Xu, P. Rui, C. Zhao, J. Power Sources 2022, 521, 230942.

[108]

Z. Zhai, Y. Zheng, T. Du, Z. Tian, B. Ren, Y. Xu, S. Wang, L. Zhang, Z. Liu, Ceram. Int. 2021, 47, 22080.

[109]

H. Wang, H. Wang, F. Ruan, Q. Feng, Y. Wei, J. Fang, Mater. Chem. Phys. 2023, 293, 126896.

[110]

M. Zhang, J. Cheng, L. Zhang, Y. Li, M. Chen, Y. Chen, Z. Shen, ACS Sustain. Chem. Eng. 2020, 8, 3637.

[111]

E. Armelin, M. M Perez-Madrigal, C. Aleman, D. Diaz Diaz, J. Mater. Chem. A 2016, 4, 8952.

[112]

Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang, H. Li, L. Ma, F. Mo, C. Zhi, Energy Storage Mater. 2019, 23, 636.

[113]

J. Zhao, Y. Chen, Y. Yao, Z.-R. Tong, P.-W. Li, Z.-M. Yang, S.-H. Jin, J. Power Sources 2018, 378, 603.

[114]

H. H. Hsu, Y. Liu, Y. Wang, B. Li, G. Luo, M. Xing, W. Zhong, ACS Sustain. Chem. Eng. 2020, 8, 6935.

[115]

H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang, L. Pan, M. Xu, Small 2021, 17, 2006807.

[116]

D. P. Dubal, N. R. Chodankar, D.-H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 2018, 47, 2065.

[117]

Q. Zhang, L. Zhao, H. Yang, L. Kong, F. Ran, J. Membr. Sci. 2021, 629, 119083.

[118]

C.-H. Lin, P.-H. Wang, W.-N. Lee, W.-C. Li, T.-C. Wen, J. Power Sources 2021, 494, 229736.

[119]

X. Li, L. Yuan, R. Liu, H. He, J. Hao, Y. Lu, Y. Wang, G. Liang, G. Yuan, Z. Guo, Adv. Energy Mater. 2021, 11, 2003010.

[120]

Z. Yang, L. Han, X. Fu, Y. Wang, H. Huang, M. Xu, Adv. Compos. Hybrid Mater. 2022, 5, 1876.

[121]

J. Menzel, E. Frąckowiak, K. Fic, Electrochim. Acta 2020, 332, 135435.

[122]

L. He, J. Wang, S. Weng, X. Jiang, Carbohydr. Polym. 2023, 306, 120587.

[123]

J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye, X. Zhang, Y. Zheng, L. Hou, H. Liu, X. Jiang, J. Mater. Chem. A 2021, 9, 18406.

[124]

C. Li, G. Liu, S. Wang, D. Wang, F. Liu, Y. Cui, D. Liang, X. Wang, Z. Yong, Y. Chi, J. Energy Storage 2022, 46, 103918.

[125]

D. Kasprzak, C. C Mayorga-Martinez, O. Alduhaish, M. Pumera, Energy Technol. 2023, 11, 2201103.

[126]

H. H. Rana, J. H. Park, G. S. Gund, H. S. Park, Energy Storage Mater. 2020, 25, 70.

[127]

H. Peng, X. Gao, K. Sun, X. Xie, G. Ma, X. Zhou, Z. Lei, Chem. Eng. J. 2021, 422, 130353.

[128]

N. M. Badawi, M. Bhatia, S. Ramesh, K. Ramesh, M. Kuniyil, M. R. Shaik, M. Khan, B. Shaik, S. F. Adil, Polymers 2023, 15, 571.

[129]

A. K. Mondal, D. Xu, S. Wu, Q. Zou, W. Lin, F. Huang, Y. Ni, Int. J. Biol. Macromol. 2022, 214, 77.

[130]

W. Liu, H. Du, M. Zhang, K. Liu, H. Liu, H. Xie, X. Zhang, C. Si, ACS Sustainable Chem. Eng. 2020, 8, 7536-7562.

[131]

W. Li, H. Sun, G. Wang, W. Sui, L. Dai, C. Si, Green Chem., 2023, 25, 2241-2261.

[132]

W. Li, G. Wang, W. Sui, T. Xu, Z. Li, A. M. Parvez, C. Si, Carbon, 2022, 196, 819-827.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

558

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/