Photodynamic eradication of intratumoral microbiota with bacteria-targeted micelles overcomes gemcitabine resistance of pancreatic cancer

Renfa Liu, Huanyu Yang, Shuai Qu, Peipei Yang, Xin Zhi, Yunxue Xu, Zhifei Dai, Linxue Qian

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 423. DOI: 10.1002/agt2.423
RESEARCH ARTICLE

Photodynamic eradication of intratumoral microbiota with bacteria-targeted micelles overcomes gemcitabine resistance of pancreatic cancer

Author information +
History +

Abstract

Increasing evidence suggests that intratumoral microbiota plays a pivotal role in tumor progression, immunosurveillance, metastasis, and chemosensitivity. Particularly, in pancreatic ductal adenocarcinoma, tumor-resident Gammaproteobacteria could transform the chemotherapeutic drug gemcitabine (Gem) into its inactive form, thus rendering chemotherapy ineffective. Herein, a strategy for selectively eradicating intratumoral bacteria was described for overcoming Gem resistance in a pancreatic cancer animal model. An antimicrobial peptide was linked with photosensitizer through a poly (ethylene glycol) chain, which can self-assemble into micelles with a diameter of ∼20 nm. The micelles could efficiently kill bacteria under light irradiation by inducing membrane depolarization, thereby inhibiting Gem metabolism. In a bacteria-resident pancreatic cancer animal model, the selective photodynamic eradication of intratumoral bacteria was demonstrated to efficiently reverse Gem resistance. This research highlights antibacterial photodynamic therapy as a promising adjuvant strategy for cancer therapy by modulating intratumoral microbiota.

Keywords

antimicrobial peptide / gemcitabine resistance / intratumoral microbiota / pancreatic ductal adenocarcinoma / photodynamic antibacterial therapy

Cite this article

Download citation ▾
Renfa Liu, Huanyu Yang, Shuai Qu, Peipei Yang, Xin Zhi, Yunxue Xu, Zhifei Dai, Linxue Qian. Photodynamic eradication of intratumoral microbiota with bacteria-targeted micelles overcomes gemcitabine resistance of pancreatic cancer. Aggregate, 2024, 5(1): 423 https://doi.org/10.1002/agt2.423

References

[1]
R. L. Siegel, K. D. Miller, A. Jemal, CA Cancer J. Clin. 2018, 68, 7.
CrossRef Google scholar
[2]
S. P. Ng, J. M. Herman, Cancers 2018, 10, 75.
CrossRef Google scholar
[3]
H. A. Burris, M. J. Moore, J. Andersen, M. R. Green, M. L. Rothenberg, M. R. Madiano, M. C. Cripps, R. K. Portenoy, A. M. Storniolo, P. Tarassoff, R. Nelson, F. A. Dorr, C. D. Stephens, D. D. VanHoff, J. Clin. Oncol. 1997, 15, 2403.
CrossRef Google scholar
[4]
F. Lei, X. Y. Xi, S. K. Batra, T. K. Bronich, J. Pharmacol. Exp. Ther. 2019, 370, 682.
CrossRef Google scholar
[5]
M. Amrutkar, I. P. Gladhaug, Cancers 2017, 9, 157.
CrossRef Google scholar
[6]
T. Koltai, S. J. Reshkin, T. M. A. Carvalho, D. Di Molfetta, M. R. Greco, K. O. Alfarouk, R. A. Cardone, Cancers 2022, 14, 2486.
CrossRef Google scholar
[7]
J. L. G Nino, H. R. Wu, K. D. LaCourse, A. G. Kempchinsky, A. Baryiames, B. Barber, N. Futran, J. Houlton, C. Sather, E. Sicinska, A. Taylor, S. S. Minot, C. D. Johnston, S. Bullman, Nature 2022, 611, 810.
CrossRef Google scholar
[8]
S. Bullman, C. S. Pedamallu, E. Sicinska, T. E. Claney, X. Y. Zhang, D. N. Cai, D. Neuberg, K. Huang, F. Guevara, T. Nelson, O. Chipashvili, T. Hagan, M. Walker, A. Ramachandran, B. Diosdado, G. Serna, N. Mulet, S. Landolfi, S. R. Y. Cajal, R. Fasani, A. J. Aguirre, K. Ng, E. Elez, S. Ogino, J. Tabernero, C. S. Fuchs, W. C. Hahn, P. Nuciforo, M. Meyerson, Science 2017, 358, 1443.
CrossRef Google scholar
[9]
L. Parhi, T. Alon-Maimon, A. Sol, D. Nejman, A. Shhadeh, T. Fainsod-Levi, O. Yajuk, B. Isaacson, J. Abed, N. Maalouf, A. Nissan, J. Sandbank, E. Yehuda-Shnaidman, F. Ponath, J. Vogel, O. Mandelboim, Z. Granot, R. Straussman, G. Bachrach, Nat. Commun. 2020, 11, 3259.
[10]
A. K. Fu, B. Q. Yao, T. T. Dong, Y. Y. Chen, J. Yao, Y. Liu, H. Li, H. R. Bai, X. Q. Liu, Y. Zhang, C. H. Wang, Y. J. Guo, N. Li, S. Cai, Cell 2022, 185, 1356.
CrossRef Google scholar
[11]
L. T. Geller, M. Barzily-Rokni, T. Danino, O. H. Jonas, N. Shental, D. Nejman, N. Gavert, Y. Zwang, Z. A. Cooper, K. Shee, C. A. Thaiss, A. Reuben, J. Livny, R. Avraham, D. T. Frederick, M. Ligorio, K. Chatman, S. E. Johnston, C. M. Mosher, A. Brandis, G. Fuks, C. Gurbatri, V. Gopalakrishnan, M. Kim, M. W. Hurd, M. Katz, J. Fleming, A. Maitra, D. A. Smith, M. Skalak, J. Bu, M. Michaud, S. A. Trauger, I. Barshack, T. Golan, J. Sandbank, K. T. Flaherty, A. Mandinova, W. S. Garrett, S. P. Thayer, C. R. Ferrone, C. Huttenhower, S. N. Bhatia, D. Gevers, J. A. Wargo, T. R. Golub, R. Straussman, Science 2017, 357, 1156.
CrossRef Google scholar
[12]
A. Aghamajidi, S. M. Vareki, Cancers 2022, 14, 3563.
CrossRef Google scholar
[13]
W. Y. Cheng, C. Y. Wu, J. Yu, Gut 2020, 69, 1867.
CrossRef Google scholar
[14]
X. D. Zhang, X. K. Chen, Y. X. Guo, G. Gao, D. D. Wang, Y. L. Wu, J. W. Liu, G. L. Liang, Y. L. Zhao, F. G. Wu, Angew. Chem. Int. Ed. 2021, 60, 14013.
CrossRef Google scholar
[15]
X. Zhao, K. C. Zhao, L. J. Chen, Y. S. Liu, J. L. Liu, X. P. Yan, ACS Appl. Mater. Inter. 2020, 12, 45850.
CrossRef Google scholar
[16]
X. M. Dai, Y. Zhao, Y. J. Yu, X. L. Chen, X. S. Wei, X. G. Zhang, C. X. Li, ACS Appl. Mater. Inter. 2017, 9, 30470.
CrossRef Google scholar
[17]
R. Li, Z. M. Chen, Z. F. Dai, Y. J. Yu, Cancer Biol Med 2021, 18, 388.
CrossRef Google scholar
[18]
W. B. Wu, D. Mao, F. Hu, S. D. Xu, C. Chen, C. J. Zhang, X. M. Cheng, Y. Y. Yuan, D. Ding, D. L. Kong, B. Liu, Adv. Mater. 2017, 29, 1700548.
[19]
Y. Wang, X. Ma, W. Zhou, C. Liu, H. Zhang, Smart Med. 2022, 1, e20220013.
[20]
C. S. Jin, L. Y. Cui, F. Wang, J. Chen, G. Zheng, Adv. Healthc. Mater. 2014, 3, 1240.
CrossRef Google scholar
[21]
Y. Y. Liu, X. F. Meng, W. B. Bu, Coordin. Chem. Rev. 2019, 379, 82.
CrossRef Google scholar
[22]
Z. L. Chen, T. Feng, J. C. Shen, J. Karges, C. Z. Jin, Y. K. Zhao, L. N. Ji, H. Chao, Inorg. Chem. Front. 2022, 9, 3034.
CrossRef Google scholar
[23]
Y. Y. Yang, X. Liu, W. Ma, Q. Xu, G. Chen, Y. F. Wang, H. H. Xiao, N. Li, X. J. Liang, M. Yu, Z. Q. Yu, Biomaterials 2021, 265, 120456.
CrossRef Google scholar
[24]
Y. Xue, Y. T. Gao, F. L. Meng, L. Luo, Cancer Biol. Med. 2021, 18, 336.
CrossRef Google scholar
[25]
X. D. Ma, W. H. Zhou, R. Zhang, C. C. Zhang, J. Q. Yan, J. Feng, J. M. Rosenholm, T. Y. Shi, X. Shen, H. B. Zhang, Mater. Today Bio. 2023, 20, 100663.
CrossRef Google scholar
[26]
J. B. Mitra, V. K. Sharma, A. Mukherjee, V. G. Sakai, A. Dash, M. Kumar, Langmuir 2020, 36, 397.
CrossRef Google scholar
[27]
M. Gandomkar, R. Najafi, M. Shafiei, M. Mazidi, M. Goudarzi, S. H. Mirfallah, F. Ebrahimi, H. R. Heydarpor, N. Abdie, Nucl. Med. Biol. 2009, 36, 199.
CrossRef Google scholar
[28]
M. Angamuthu, N. Damle, D. Khan, R. Meel, S. Sharma, C. Bal, Nucl. Med. Molec. Imag. 2023, 57, 162.
CrossRef Google scholar
[29]
P. Kaushik, S. D. Maurya, N. Damle, S. Ballal, V. S. Kumar, C. Bal, M. Tripathi, Nucl. Med. Molec. Imag. 2022, 56, 171.
CrossRef Google scholar
[30]
Dong Wang, Lijuan Niu, Zeng-Ying Qiao, Dong-Bing Cheng, Jiefei Wang, Yong Zhong, Feng Bai, Hao Wang, H. Fan, ACS Nano 2018, 12, 3796.
CrossRef Google scholar
[31]
Yihui Chen, Andrew Graham, William Potter, Janet Morgan, Lurine Vaughan, David A. Bellnier, Barbara W. Henderson, Allan Oseroff, Thomas J. Dougherty, R. K. Pandey, J. Med. Chem. 2002, 45, 255.
CrossRef Google scholar
[32]
C. E. S Hoogstins, L. S. F. Boogerd, B. G. S. Mulder, J. S. D. Mieog, R. J. Swijnenburg, C. J. H. van de Velde, A. Sarasqueta, B. A. Bonsing, B. Framery, A. Pelegrin, M. Gutowski, F. Cailler, J. Burggraaf, A. L. Vahrmeijer, Ann. Surg. Oncol. 2018, 25, 3350.
CrossRef Google scholar
[33]
D. Nejman, I. Livyatan, G. Fuks, N. Gavert, Y. Zwang, L. T. Geller, A. Rotter-Maskowitz, R. Weiser, G. Mallel, E. Gigi, A. Meltser, G. M. Douglas, I. Kamer, V. Gopalakrishnan, T. Dadosh, S. Levin-Zaidman, S. Avnet, T. Atlan, Z. A. Cooper, R. Arora, A. P. Cogdill, M. A. W. Khan, G. Ologun, Y. Bussi, A. Weinberger, M. Lotan-Pompan, O. Golani, G. Perry, M. Rokah, K. Bahar-Shany, E. A. Rozeman, C. U. Blank, A. Ronai, R. Shaoul, A. Amit, T. Dorfman, R. Kremer, Z. R. Cohen, S. Harnof, T. Siegal, E. Yehuda-Shnaidman, E. N Gal-Yam, H. Shapira, N. Baldini, M. G. I. Langille, A. Ben-Nun, B. Kaufman, A. Nissan, T. Golan, M. Dadiani, K. Levanon, J. Bar, S. Yust-Katz, I. Barshack, D. S. Peeper, D. J. Raz, E. Segal, J. A. Wargo, J. Sandbank, N. Shental, R. Straussman, Science 2020, 368, 973.
CrossRef Google scholar
[34]
C. R. Gurbatri, I. Lia, R. Vincent, C. Coker, S. Castro, P. M. Treuting, T. E. Hinchliffe, N. Arpaia, T. Danino, Sci. Transl. Med. 2020, 12, eaax0876.
[35]
T. Danino, A. Prindle, G. A. Kwong, M. Skalak, H. Li, K. Allen, J. Hasty, S. N. Bhatia, Sci. Transl. Med. 2015, 7, 289ra84.
[36]
C. Gregor, K. C. Gwosch, S. J. Sahl, S. W. Hell, P. Natl. Acad. Sci. USA 2018, 115, 962.
CrossRef Google scholar
[37]
F. F. Xiao, B. Cao, C. Y. Wang, X. J. Guo, M. G. Li, D. Xing, X. L. Huo, ACS Nano 2019, 13, 7356.
CrossRef Google scholar
[38]
H. Y. Yang, R. F. Liu, Y. X. Xu, L. X. Qian, Z. F. Dai, Nano-Micro Lett. 2021, 13, 1.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/