Multiporphyrinic architectures: Advances in structural design for photodynamic therapy

Yuwei Gao, Yan Li, Zhengwei Xu, Shuangjiang Yu, Junqiu Liu, Hongcheng Sun

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 420. DOI: 10.1002/agt2.420
REVIEW

Multiporphyrinic architectures: Advances in structural design for photodynamic therapy

Author information +
History +

Abstract

Rationally designed multiporphyrinic architectures for boosting photodynamic therapy (PDT) have attracted significant attentions recently years due to their great potential for light-mediated generation of reactive oxygen species. However, there is still a gap between the structure design and their PDT performance for biomedical applications. This tutorial review provides a historical overview on (i) the basic concept of PDT for deeply understanding the porphyrin-mediated PDT reactions, (ii) developing strategies for constructing porphyrinic architectures, like nanorings, boxes, metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), vesicles, etc., where we classified into the following three categories: multiporphyrin arrays, porphyrinic frameworks, and others porphyrin assemblies, (iii) the various application scenarios for clinical cancer therapy and antibacterial infection. Also, the existing challenges and future perspectives on the innovation of porphyrinic architectures for clinical PDT applications are mentioned in the end section. Moreover, the porphyrinic nanomaterials with atomically precise architectures provide an ideal platform for investigating the relationship between structures and PDT outputs, design of personalized “all-in-one” theranostic agents, and the popularization and application in wider biomedical fields.

Keywords

covalent-organic frameworks (COFs) / metal-organic frameworks (MOFs) / multiporphyrin arrays / photodynamic therapy (PDT) / porphyrinic architectures

Cite this article

Download citation ▾
Yuwei Gao, Yan Li, Zhengwei Xu, Shuangjiang Yu, Junqiu Liu, Hongcheng Sun. Multiporphyrinic architectures: Advances in structural design for photodynamic therapy. Aggregate, 2024, 5(1): 420 https://doi.org/10.1002/agt2.420

References

[1]
R.Croce, H.van Amerongen, Nat. Chem. Biol. 2014, 10, 492.
CrossRef Google scholar
[2]
M.Ethirajan, Y.Chen, P.Joshi, R. K. Pandey, Chem. Soc. Rev. 2011, 40, 340.
CrossRef Google scholar
[3]
J.Chen, Y.Zhu, S.Kaskel, Angew. Chem. Int. Ed. 2021, 60, 5010.
CrossRef Google scholar
[4]
P. A.Stuzhin, E. M.Bauer, C.Ercolani, Inorg. Chem. 1998, 37, 1533.
CrossRef Google scholar
[5]
M.Lan, S.Zhao, W.Liu, C.-S. Lee, W.Zhang, P.Wang, Adv. Healthcare Mater. 2019, 8, 1900132.
[6]
M. A.Rajora, J. W. H. Lou, G.Zheng, Chem. Soc. Rev. 2017, 46, 6433.
CrossRef Google scholar
[7]
H. C.Sun, L.Miao, J. X.Li, S. Fu, G.An, C. Y.Si, Z. Y.Dong, Q.Luo, S. J. Yu, J. Y.Xu, J. Q.Liu, ACS Nano2015, 9, 5461.
CrossRef Google scholar
[8]
P.Agostinis, K.Berg, K. A.Cengel, T. H. Foster, A. W.Girotti, S. O.Gollnick, S. M.Hahn, M. R.Hamblin, A.Juzeniene, D.Kessel, M.Korbelik, J.Moan, P.Mroz, D.Nowis, J. Piette, B. C.Wilson, J.Golab, CA: Cancer J. Clin. 2011, 61, 250.
CrossRef Google scholar
[9]
D. E. J. G. J.Dolmans, D. Fukumura, R. K.Jain, Nat. Rev. Cancer. 2003, 3, 380.
CrossRef Google scholar
[10]
S. S.Lucky, K. C.Soo, Y.Zhang, Chem. Rev. 2015, 115, 1990.
CrossRef Google scholar
[11]
Q.Sun, Q.Su, Y.Gao, K. Zhou, W.Song, P.Quan, X.Yang, Z.Ge, Y.Zhang, G.He, Aggregate2023, 4, e298.
[12]
S.Kwiatkowski, B.Knap, D.Przystupski, J.Saczko, E.Kędzierska, K.Knap-Czop, J.Kotlińska, O. Michel, K.Kotowski, J.Kulbacka, Biomed. Pharmacother. 2018, 106, 1098.
CrossRef Google scholar
[13]
S.Li, F.Yang, Y.Wang, T. Du, X.Hou, Chem. Eng. J. 2023, 451, 138621.
CrossRef Google scholar
[14]
J.Tian, B.Huang, M. H.Nawaz, W. Zhang, Coord. Chem. Rev. 2020, 420, 213410.
CrossRef Google scholar
[15]
Z.Yu, P.Zhou, W.Pan, N. Li, B.Tang, Nat. Commun. 2018, 9, 5044.
[16]
G.McDermott, S. M.Prince, A. A.Freer, A. M.Hawthornthwaite-Lawless, M. Z.Papiz, R. J.Cogdell, N. W.Isaacs, Nature1995, 374, 517.
CrossRef Google scholar
[17]
Y.Nakamura, N.Aratani, A.Osuka, Chem. Soc. Rev. 2007, 36, 831.
CrossRef Google scholar
[18]
P. T.Smith, B. P.Benke, Z.Cao, Y. Kim, E. M.Nichols, K.Kim, C. J.Chang, Angew. Chem. Int. Ed. 2018, 57, 9684.
CrossRef Google scholar
[19]
A.Fateeva, P. A.Chater, C. P.Ireland, A. A.Tahir, Y. Z.Khimyak, P. V.Wiper, J. R.Darwent, M. J.Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440.
CrossRef Google scholar
[20]
S.-P.Wang, Y.-F.Shen, B.-Y.Zhu, J. Wu, S.Li, Chem. Commun. 2016, 52, 10205.
CrossRef Google scholar
[21]
S.Durot, J.Taesch, V.Heitz, Chem. Rev. 2014, 114, 8542.
CrossRef Google scholar
[22]
D.Feng, Z.-Y.Gu, Y.-P.Chen, J. Park, Z.Wei, Y.Sun, M.Bosch, S.Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2014, 136, 17714.
CrossRef Google scholar
[23]
X.Zhang, M. C.Wasson, M.Shayan, E. K.Berdichevsky, J. Ricardo-Noordberg, Z.Singh, E. K.Papazyan, A. J.Castro, P.Marino, Z.Ajoyan, Z.Chen, T.Islamoglu, A. J.Howarth, Y.Liu, M. B.Majewski, M. J.Katz, J. E.Mondloch, O. K.Farha, Coord. Chem. Rev. 2021, 429, 213615.
CrossRef Google scholar
[24]
S.Liu, J.Xu, X.Li, T.Yan, S.Yu, H.Sun, J.Liu, Molecules2021, 26, 3310.
CrossRef Google scholar
[25]
R. D.Mukhopadhyay, Y. Kim, J.Koo, K.Kim, Acc. Chem. Res. 2018, 51, 2730.
CrossRef Google scholar
[26]
M.Chen, H.Li, C.Liu, J. Liu, Y.Feng, A. G. H.Wee, B.Zhang, Coord. Chem. Rev. 2021, 435, 213778.
CrossRef Google scholar
[27]
B. MAmos-Tautua, S. P. Songca, O. S.Oluwafemi, Molecules2019, 24, 2456.
CrossRef Google scholar
[28]
Y.Nakamura, I. W.Hwang, N.Aratani, T. K. Ahn, D. M.Ko, A.Takagi, T.Kawai, T.Matsumoto, D. Kim, A.Osuka, J. Am. Chem. Soc. 2005, 127, 236.
CrossRef Google scholar
[29]
X.Peng, N.Aratani, A.Takagi, T.Matsumoto, T.Kawai, I.-W.Hwang, T. K. Ahn, D.Kim, A.Osuka, J. Am. Chem. Soc. 2004, 126, 4468.
CrossRef Google scholar
[30]
T.Hori, N.Aratani, A.Takagi, T.Matsumoto, T.Kawai, M.-C.Yoon, Z. S. Yoon, S.Cho, D.Kim, A.Osuka, Chem. Eur. J. 2006, 12, 1319.
CrossRef Google scholar
[31]
I.-W.Hwang, M.Park, T. K.Ahn, Z. S. Yoon, D. M.Ko, D.Kim, F.Ito, Y.Ishibashi, S. R. Khan, Y.Nagasawa, H.Miyasaka, C.Ikeda, R.Takahashi, K. Ogawa, A.Satake, Y.Kobuke, Chem. Eur. J. 2005, 11, 3753.
CrossRef Google scholar
[32]
I.-W.Hwang, T.Kamada, T. K.Ahn, D. M.Ko, T.Nakamura, A.Tsuda, A.Osuka, D.Kim, J. Am. Chem. Soc. 2004, 126, 16187.
CrossRef Google scholar
[33]
W.Meng, B.Breiner, K.Rissanen, J. D.Thoburn, J. K.Clegg, J. R.Nitschke, Angew. Chem. Int. Ed. 2011, 50, 3479.
CrossRef Google scholar
[34]
A. K.Bar, R.Chakrabarty, G.Mostafa, P. S.Mukherjee, Angew. Chem. Int. Ed. 2008, 47, 8455.
CrossRef Google scholar
[35]
Y.Sun, C.Chen, J.Liu, L. Liu, W.Tuo, H.Zhu, S.Lu, X.Li, P. J.Stang, J. Am. Chem. Soc. 2020, 142, 17903.
CrossRef Google scholar
[36]
X.Jiang, Z.Zhou, H.Yang, C. Shan, H.Yu, L.Wojtas, M.Zhang, Z.Mao, M. Wang, P. J.Stang, Inorg. Chem. 2020, 59, 7380.
CrossRef Google scholar
[37]
S.Hong, M. R.Rohman, J.Jia, Y.Kim, D.Moon, Y.Kim, Y. H. Ko, E.Lee, K.Kim, Angew. Chem. Int. Ed. 2015, 54, 13241.
CrossRef Google scholar
[38]
T.He, B.Ni, S.Zhang, Y. Gong, H.Wang, L.Gu, J.Zhuang, W.Hu, X.Wang, Small2018, 14, 1703929.
[39]
K.Lu, C.He, W.Lin, J. Am. Chem. Soc. 2014, 136, 16712.
CrossRef Google scholar
[40]
W.Zhang, J.Lu, X.Gao, P. Li, W.Zhang, Y.Ma, H.Wang, B.Tang, Angew. Chem. Int. Ed. 2018, 57, 4891.
CrossRef Google scholar
[41]
J.Park, Q.Jiang, D.Feng, L. Mao, H.-C.Zhou, J. Am. Chem. Soc. 2016, 138, 3518.
CrossRef Google scholar
[42]
C.Wang, F.Cao, Y.Ruan, X. Jia, W.Zhen, X.Jiang, Angew. Chem. Int. Ed. 2019, 58, 9846.
CrossRef Google scholar
[43]
D.Han, Y.Han, J.Li, X.Liu, K. W. K.Yeung, Y.Zheng, Z.Cui, X.Yang, Y. Liang, Z.Li, S.Zhu, X.Yuan, X.Feng, C. Yang, S.Wu, Appl. Catal. B: Environ. 2020, 261, 118248.
CrossRef Google scholar
[44]
J.-Y.Zeng, M.-Z.Zou, M.Zhang, X.-S. Wang, X.Zeng, H.Cong, X.-Z.Zhang, ACS Nano2018, 12, 4630.
CrossRef Google scholar
[45]
G.Lin, H.Ding, R.Chen, Z. Peng, B.Wang, C.Wang, J. Am. Chem. Soc. 2017, 139, 8705.
CrossRef Google scholar
[46]
D.Wang, Z.Zhang, L.Lin, F. Liu, Y.Wang, Z.Guo, Y.Li, H.Tian, X. Chen, Biomaterials2019, 223, 119459.
CrossRef Google scholar
[47]
D.Tao, L.Feng, Y.Chao, C. Liang, X.Song, H.Wang, K.Yang, Z.Liu, Adv. Funct. Mater. 2018, 28, 1804901.
[48]
X.Wan, H.Zhang, W.Pan, N. Li, B.Tang, Chem. Commun. 2021, 57, 5402.
CrossRef Google scholar
[49]
B.Sun, Z.Ye, M.Zhang, Q. Song, X.Chu, S.Gao, Q.Zhang, C.Jiang, N. Zhou, C.Yao, J.Shen, ACS Appl. Mater. Inter. 2021, 13, 42396.
CrossRef Google scholar
[50]
M.Jiang, J.Wu, W.Liu, H. Ren, W.Zhang, C.-S.Lee, P.Wang, Chem. Eur. J. 2021, 27, 11195.
CrossRef Google scholar
[51]
S.Liu, T.Yan, J.Sun, F. Li, J.Xu, H.Sun, S.Yu, J.Liu, Molecules 2021, 26, 5609.
CrossRef Google scholar
[52]
T. J.Dougherty, G. B.Grindey, R.Fiel, K. R.Weishaupt, D. G.Boyle, J. Natl. Cancer I. 1975, 55, 115.
CrossRef Google scholar
[53]
W.Fan, P.Huang, X.Chen, Chem. Soc. Rev. 2016, 45, 6488.
CrossRef Google scholar
[54]
G.Feng, G.-Q.Zhang, D.Ding, Chem. Soc. Rev. 2020, 49, 8179.
CrossRef Google scholar
[55]
L.Huang, S.Zhao, J.Wu, L.Yu, N.Singh, K. Yang, M.Lan, P.Wang, J. S.Kim, Coord. Chem. Rev. 2021, 438, 213888.
CrossRef Google scholar
[56]
U.Chilakamarthi, L. Giribabu, Chem. Rec. 2017, 17, 775.
CrossRef Google scholar
[57]
N.Aratani, D.Kim, A.Osuka, Acc. Chem. Res. 2009, 42, 1922.
CrossRef Google scholar
[58]
J. S.Lindsey, Acc. Chem. Res. 2010, 43, 300.
CrossRef Google scholar
[59]
H. C.Sun, X. Y.Zhang, L.Miao, L. L. Zhao, Q.Luo, J. Y.Xu, J. Q.Liu, ACS Nano2016, 10, 421.
CrossRef Google scholar
[60]
Y.Li, C.Xia, R.Tian, L. Zhao, J.Hou, J.Wang, Q.Luo, J.Xu, L.Wang, C.Hou, B. Yang, H.Sun, J.Liu, ACS Nano2022, 16, 8012.
CrossRef Google scholar
[61]
H. L.Anderson, J. K. M. Sanders, Angew. Chem. Int. Ed. 1990, 29, 1400.
CrossRef Google scholar
[62]
B.Zhu, H.Chen, W.Lin, Y. Ye, J.Wu, S.Li, J. Am. Chem. Soc. 2014, 136, 15126.
CrossRef Google scholar
[63]
S.Anderson, H. L.Anderson, J. K. M.Sanders, Angew. Chem. Int. Ed. 1992, 31, 907.
CrossRef Google scholar
[64]
P.Liu, P.Neuhaus, D. V.Kondratuk, T. S.Balaban, H. L.Anderson, Angew. Chem. Int. Ed. 2014, 53, 7770.
CrossRef Google scholar
[65]
M.Hoffmann, C. J.Wilson, B.Odell, H. L.Anderson, Angew. Chem. Int. Ed. 2007, 46, 3122.
CrossRef Google scholar
[66]
S.Liu, D. V.Kondratuk, S. A. L.Rousseaux, G.Gil-Ramírez, M. C. O’Sullivan, J.Cremers, T. D. W.Claridge, H. L.Anderson, Angew. Chem. Int. Ed. 2015, 54, 5355.
CrossRef Google scholar
[67]
M. C.O’Sullivan, J. K. Sprafke, D. V.Kondratuk, C.Rinfray, T. D. W. Claridge, A.Saywell, M. O.Blunt, J. N.O’Shea, P. H.Beton, M.Malfois, H. L.Anderson, Nature2011, 469, 72.
CrossRef Google scholar
[68]
D. V.Kondratuk, L. M. A. Perdigao, M. C.O’Sullivan, S.Svatek, G.Smith, J. N.O’Shea, P. H.Beton, H. L.Anderson, Angew. Chem. Int. Ed. 2012, 51, 6696.
CrossRef Google scholar
[69]
D. V.Kondratuk, L. M. A. Perdigão, A. M. S. Esmail, J. N.O’Shea, P. H.Beton, H. L.Anderson, Nat. Chem. 2015, 7, 317.
CrossRef Google scholar
[70]
L.Favereau, A.Cnossen, J. B.Kelber, J. Q.Gong, R. M.Oetterli, J.Cremers, L. M.Herz, H. L.Anderson, J. Am. Chem. Soc. 2015, 137, 14256.
CrossRef Google scholar
[71]
P.Parkinson, N.Kamonsutthipaijit, H. L.Anderson, L. M.Herz, ACS Nano2016, 10, 5933.
CrossRef Google scholar
[72]
P.Parkinson, C. E. I. Knappke, N.Kamonsutthipaijit, K.Sirithip, J. D.Matichak, H. L.Anderson, L. M.Herz, J. Am. Chem. Soc. 2014, 136, 8217.
CrossRef Google scholar
[73]
M.Hoffmann, J.Kärnbratt, M.-H.Chang, L. M.Herz, B.Albinsson, H. L.Anderson, Angew. Chem. Int. Ed. 2008, 47, 4993.
CrossRef Google scholar
[74]
A.Ambroise, J.Li, L.Yu, J. S.Lindsey, Org. Lett. 2000, 2, 2563.
CrossRef Google scholar
[75]
R. W.Wagner, J.Seth, S. I.Yang, D. Kim, D. F.Bocian, D.Holten, J. S.Lindsey, J. Org. Chem. 1998, 63, 5042.
CrossRef Google scholar
[76]
A.Kato, K.Sugiura, H.Miyasaka, H.Tanaka, T.Kawai, M.Sugimoto, M. Yamashita, Chem. Lett. 2004, 33, 578.
CrossRef Google scholar
[77]
J.Li, A.Ambroise, S. I.Yang, J. R.Diers, J.Seth, C. R.Wack, D. F. Bocian, D.Holten, J. S.Lindsey, J. Am. Chem. Soc. 1999, 121, 8927.
CrossRef Google scholar
[78]
D.Holten, D. F.Bocian, J. S.Lindsey, Acc. Chem. Res. 2002, 35, 57.
CrossRef Google scholar
[79]
F.Hajjaj, K.Tashiro, H.Nikawa, N.Mizorogi, T.Akasaka, S.Nagase, K.Furukawa, T.Kato, T.Aida, J. Am. Chem. Soc. 2011, 133, 9290.
CrossRef Google scholar
[80]
T.Inomata, K.Konishi, Chem. Commun. 2003, 1282.
[81]
B.Liu, A. M.Romine, C. Z.Rubel, K. M.Engle, B. F.Shi, Chem. Rev. 2021, 121, 14957.
CrossRef Google scholar
[82]
A.Tsuda, T.Nakamura, S.Sakamoto, K.Yamaguchi, A.Osuka, Angew. Chem. Int. Ed. 2002, 41, 2817.
CrossRef Google scholar
[83]
T.Kamada, N.Aratani, T.Ikeda, N.Shibata, Y.Higuchi, A.Wakamiya, S.Yamaguchi, K. S.Kim, Z. S.Yoon, D. Kim, A.Osuka, J. Am. Chem. Soc. 2006, 128, 7670.
CrossRef Google scholar
[84]
J.Aimi, Y.Nagamine, A.Tsuda, A.Muranaka, M.Uchiyama, T.Aida, Angew. Chem. Int. Ed. 2008, 47, 5153.
CrossRef Google scholar
[85]
N.Fujita, K.Biradha, M.Fujita, S.Sakamoto, K.Yamaguchi, Angew. Chem. Int. Ed. 2001, 40, 1718.
CrossRef Google scholar
[86]
A. K.Bar, S.Mohapatra, E.Zangrando, P. S.Mukherjee, Chem. –Eur. J. 2012, 18, 9571.
CrossRef Google scholar
[87]
Y.-R.Zheng, Z.Zhao, M.Wang, K. Ghosh, J. B.Pollock, T. R.Cook, P. J.Stang, J. Am. Chem. Soc. 2010, 132, 16873.
CrossRef Google scholar
[88]
F.Schmitt, N. P. E. Barry, L.Juillerat-Jeanneret, B.Therrien, Bioorg. Med. Chem. Lett. 2012, 22, 178.
CrossRef Google scholar
[89]
N. E.Kagan, D.Mauzerall, R. B.Merrifield, J. Am. Chem. Soc. 1977, 99, 5484.
CrossRef Google scholar
[90]
S.Klotzbach, T.Scherpf, F.Beuerle, Chem. Commun. 2014, 50, 12454.
CrossRef Google scholar
[91]
B. P.Benke, P.Aich, Y.Kim, K. L. Kim, M. R.Rohman, S.Hong, I.-C.Hwang, E. H.Lee, J. H. Roh, K.Kim, J. Am. Chem. Soc. 2017, 139, 7432.
CrossRef Google scholar
[92]
Y.Kim, J.Koo, I.-C.Hwang, R. D. Mukhopadhyay, S.Hong, J.Yoo, A. A. Dar, I.Kim, D.Moon, T. J.Shin, Y. H.Ko, K. Kim, J. Am. Chem. Soc. 2018, 140, 14547.
CrossRef Google scholar
[93]
H. C.Zhou, J. R.Long, O. M.Yaghi, Chem. Rev. 2012, 112, 673.
CrossRef Google scholar
[94]
H. C.Sun, Y.Li, S. J.Yu, J. Q. Liu, Nano Today. 2020, 35, 100985.
CrossRef Google scholar
[95]
Y.-Y.Liu, L.-J.Chen, X.Zhao, X.-P. Yan, Chem. Eur. J. 2021, 27, 10151.
CrossRef Google scholar
[96]
B. F.Abrahams, B. F.Hoskins, R.Robson, J. Am. Chem. Soc. 1991, 113, 3606.
CrossRef Google scholar
[97]
Z.-H.Zhu, Y.Liu, C.Song, Y. Hu, G.Feng, B. Z.Tang, ACS Nano 2022, 16, 1346.
CrossRef Google scholar
[98]
A.Fateeva, S.Devautour-Vinot, N.Heymans, T.Devic, J.-M.Grenèche, S.Wuttke, S.Miller, A.Lago, C.Serre, G. De Weireld, G.Maurin, A.Vimont, G.Férey, Chem. Mater. 2011, 23, 4641.
CrossRef Google scholar
[99]
G.Liu, H.Cui, S.Wang, L. Zhang, C.-Y.Su, J. Mater. Chem. A2020, 8, 8376.
CrossRef Google scholar
[100]
M. H.Beyzavi, N. A.Vermeulen, A. J.Howarth, S.Tussupbayev, A. B.League, N. M.Schweitzer, J. R.Gallagher, A. EPlatero-Prats, N.Hafezi, A. A.Sarjeant, J. T.Miller, K. W.Chapman, J. F.Stoddart, C. J.Cramer, J. T.Hupp, O. K.Farha, J. Am. Chem. Soc. 2015, 137, 13624.
CrossRef Google scholar
[101]
Y.-C.Qiu, S.Yuan, X.-X.Li, D.-Y. Du, C.Wang, J.-S.Qin, H. F.Drake, Y.-Q.Lan, L. Jiang, H.-C.Zhou, J. Am. Chem. Soc. 2019, 141, 13841.
CrossRef Google scholar
[102]
D.Feng, Z.-Y.Gu, J.-R.Li, H.-L. Jiang, Z.Wei, H.-C.Zhou, Angew. Chem. Int. Ed. 2012, 51, 10307.
CrossRef Google scholar
[103]
P.Deria, D. A.Gómez-Gualdrón, I.Hod, R. Q.Snurr, J. T. Hupp, O. K.Farha, J. Am. Chem. Soc. 2016, 138, 14449.
CrossRef Google scholar
[104]
D.Feng, W.-C.Chung, Z.Wei, Z.-Y. Gu, H.-L.Jiang, Y.-P.Chen, D. J.Darensbourg, H.-C.Zhou, J. Am. Chem. Soc. 2013, 135, 17105.
CrossRef Google scholar
[105]
H.-L.Jiang, D.Feng, K.Wang, Z.-Y. Gu, Z.Wei, Y.-P.Chen, H.-C.Zhou, J. Am. Chem. Soc. 2013, 135, 13934.
CrossRef Google scholar
[106]
M. O.Cichocka, Z.Liang, D.Feng, S. Back, S.Siahrostami, X.Wang, L.Samperisi, Y.Sun, H.Xu, N.Hedin, H.Zheng, X. Zou, H.-C.Zhou, Z.Huang, J. Am. Chem. Soc. 2020, 142, 15386.
CrossRef Google scholar
[107]
M.Chen, J.Zhang, J.Qi, R.Dong, H.Liu, D. Wu, H.Shao, X.Jiang, ACS Nano2022, 16, 7732.
CrossRef Google scholar
[108]
A.Schlachter, P.Asselin, P. D.Harvey, ACS Appl. Mater. Inter. 2021, 13, 26651.
CrossRef Google scholar
[109]
K.Ni, T.Aung, S.Li, N.Fatuzzo, X.Liang, W.Lin, Chem2019, 5, 1892.
CrossRef Google scholar
[110]
Y.Zhao, J.Wang, X.Cai, P. Ding, H.Lv, R.Pei, ACS Appl. Mater. Inter. 2020, 12, 23697.
CrossRef Google scholar
[111]
X.Feng, X.Ding, D.Jiang, Chem. Soc. Rev. 2012, 41, 6010.
CrossRef Google scholar
[112]
X.Feng, L.Liu, Y.Honsho, A. Saeki, S.Seki, S.Irle, Y.Dong, A.Nagai, D. Jiang, Angew. Chem. Int. Ed. 2012, 51, 2618.
CrossRef Google scholar
[113]
X.Xu, S.Wang, Y.Yue, N. Huang, ACS Appl. Mater. Inter. 2020, 12, 37427.
CrossRef Google scholar
[114]
M.Calik, F.Auras, L. M.Salonen, K.Bader, I.Grill, M.Handloser, D. D. Medina, M.Dogru, F.Lobermann, D.Trauner, A.Hartschuh, T.Bein, J. Am. Chem. Soc. 2014, 136, 17802.
CrossRef Google scholar
[115]
X.Liu, H.Li, Y.Zhang, B. Xu, S.A, H.Xia, Y.Mu, Polym. Chem. 2013, 4, 2445.
CrossRef Google scholar
[116]
W.Hao, D.Chen, Y.Li, Z.Yang, G.Xing, J. Li, L.Chen, Chem. Mater. 2019, 31, 8100.
CrossRef Google scholar
[117]
L.Chen, Y.Yang, Z.Guo, D. Jiang, Adv. Mater. 2011, 23, 3149.
CrossRef Google scholar
[118]
N.Huang, X.Chen, R.Krishna, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 2986.
CrossRef Google scholar
[119]
S.Wan, F.Gándara, A.Asano, H.Furukawa, A.Saeki, S. K.Dey, L. Liao, M. W.Ambrogio, Y. Y.Botros, X.Duan, S.Seki, J. F. Stoddart, O. M.Yaghi, Chem. Mater. 2011, 23, 4094.
CrossRef Google scholar
[120]
H.Wang, C. H.Liu, K.Wang, M. H. Wang, H.Yu, S.Kandapal, R.Brzozowski, B. Q.Xu, M.Wang, S.Ha, X. Q.Hao, P. Eswara, M. P.Nieh, J. F.Cai, X. P.Li, J. Am. Chem. Soc. 2019, 141, 16108.
CrossRef Google scholar
[121]
Y.Cheng, H.Cheng, C.Jiang, X. Qiu, K.Wang, W.Huan, A.Yuan, J.Wu, Y.Hu, Nat. Commun. 2015, 6, 8785.
[122]
K.Hao, L.Lin, P.Sun, Y. Hu, M.Atsushi, Z.Guo, H.Tian, X.Chen, Small2021, 17, 2008125.
[123]
C.-Y.Hsu, M.-P.Nieh, P.-S.Lai, Chem. Commun. 2012, 48, 9343.
CrossRef Google scholar
[124]
X.Fan, R.Tian, T.Wang, S. Liu, L.Wang, J.Xu, J.Liu, M.Ma, Z.Wu, Nanoscale2018, 10, 22155.
CrossRef Google scholar
[125]
J.Wang, Y.Zhong, X.Wang, W. Yang, F.Bai, B.Zhang, L.Alarid, K.Bian, H.Fan, Nano Lett. 2017, 17, 6916.
CrossRef Google scholar
[126]
L.Xia, J.Tian, T.Yue, H. Cao, J.Chu, H.Cai, W.Zhang, Adv. Healthcare Mater. 2022, 11, 2102015.
[127]
J.Wang, Z.Wang, Y.Zhong, Y. Zou, C.Wang, H.Wu, A.Lee, W.Yang, X. Wang, Y.Liu, D.Zhang, J.Yan, M.Hao, M. Zheng, R.Chung, F.Bai, B.Shi, Biomaterials2020, 229, 119576.
CrossRef Google scholar
[128]
J.Yu, Y.Li, A.Yan, Y. Gao, F.Xiao, Z.Xu, J.Xu, S.Yu, J.Liu, H.Sun, Adv. Sci. 2023, 10, 202301919.
[129]
D.Zhang, Z.Ye, L.Wei, H. Luo, L.Xiao, ACS Appl. Mater. Inter. 2019, 11, 39594.
CrossRef Google scholar
[130]
S.-Y.Yin, G.Song, Y.Yang, Y. Zhao, P.Wang, L.-M.Zhu, X.Yin, X.-B.Zhang, Adv. Funct. Mater. 2019, 29, 1901417.
[131]
M.Xia, Y.Yan, H.Pu, X.Du, J.Liang, Y. Sun, J.Zheng, Y.Yuan, Chem. Eng. J. 2022, 442, 136295.
CrossRef Google scholar
[132]
J.-Y.Zeng, M.-K.Zhang, M.-Y.Peng, D. Gong, X.-Z.Zhang, Adv. Funct. Mater. 2018, 28, 1705451.
[133]
S.-Y.Li, H.Cheng, B.-R.Xie, W.-X. Qiu, J.-Y.Zeng, C.-X.Li, S.-S.Wan, L.Zhang, W.-L. Liu, X.-Z.Zhang, ACS Nano2017, 11, 7006.
CrossRef Google scholar
[134]
G. C.Yu, S.Yu, M. L.Saha, J. Zhou, T. R.Cook, B. C.Yung, J.Chen, Z. W.Mao, F. W. Zhang, Z. J.Zhou, Y. J.Liu, L.Shao, S.Wang, C. Y. Gao, F. H.Huang, P. J.Stang, X. Y.Chen, Nat. Commun. 2018, 9, 4335.
[135]
J.Wang, F.Li, Z.Xu, M.Zang, S.Liu, T. Li, J.Xu, H.Sun, S.Yu, J.Liu, Chem. Eng. J. 2022, 444, 136620.
CrossRef Google scholar
[136]
X.Hu, H.Zhang, Y.Wang, B.-C. Shiu, J.-H.Lin, S.Zhang, C.-W.Lou, T.-T.Li, Chem. Eng. J. 2022, 450, 138129.
CrossRef Google scholar
[137]
Y.Sun, C.Zhao, J.Niu, J. Ren, X.Qu, ACS Cent. Sci. 2020, 6, 207.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/