Microfluidic bubble-generator enables digital light processing 3D printing of porous structures

Philipp Weber, Ling Cai, Francisco Javier Aguilar Rojas, Carlos Ezio Garciamendez-Mijares, Maria Celeste Tirelli, Francesco Nalin, Jakub Jaroszewicz, Wojciech Święszkowski, Marco Costantini, Yu Shrike Zhang

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 409. DOI: 10.1002/agt2.409
RESEARCH ARTICLE

Microfluidic bubble-generator enables digital light processing 3D printing of porous structures

Author information +
History +

Abstract

Three-dimensional (3D) printing is an emerging technique that has shown promising success in engineering human tissues in recent years. Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components. Similarly, the development of microfluidic chip systems is an emerging research sector with promising medical applications. This work demonstrates the coupling of a digital light processing (DLP) printing procedure with a microfluidic chip system to produce size-tunable, 3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl (GelMA) hydrogel matrix. It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision. Furthermore, the porosities are printed in two-dimensional (2D) as well as in 3D using the DLP printer. In addition, the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts, where high cell viabilities as well as cell proliferation, spreading, and migration are confirmed. It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine, among others.

Keywords

3D printing / biofabrication / bubble / digital light processing / microfluidics / porous

Cite this article

Download citation ▾
Philipp Weber, Ling Cai, Francisco Javier Aguilar Rojas, Carlos Ezio Garciamendez-Mijares, Maria Celeste Tirelli, Francesco Nalin, Jakub Jaroszewicz, Wojciech Święszkowski, Marco Costantini, Yu Shrike Zhang. Microfluidic bubble-generator enables digital light processing 3D printing of porous structures. Aggregate, 2024, 5(1): 409 https://doi.org/10.1002/agt2.409

References

[1]
S. V. Murphy, A. Atala, Nat. Biotechnol. 2014, 32, 773.
CrossRef Google scholar
[2]
M. Mobaraki, M. Ghaffari, A. Yazdanpanah, Y. Luo, D. Mills, Bioprinting 2020, 18, e00080.
CrossRef Google scholar
[3]
Y. S. Zhang, R. Oklu, M. R. Dokmeci, A. Khademhosseini, Cold Spring Harb. Perspect. Med. 2018, 8, a025718.
CrossRef Google scholar
[4]
D. Huh, G. A. Hamilton, D. E. Ingber, Trends Cell Biol. 2011, 21, 745.
CrossRef Google scholar
[5]
S. Caddeo, M. Boffito, S. Sartori, Front. Bioeng. Biotechnol. 2017, 5, 40.
[6]
L. Moroni, J. A. Burdick, C. Highley, S. J. Lee, Y. Morimoto, S. Takeuchi, J. J. Yoo, Nat. Rev. Mater. 2018, 3, 21.
CrossRef Google scholar
[7]
S.-W. Choi, Y. Zhang, Y. Xia, Langmuir 2010, 26, 19001.
CrossRef Google scholar
[8]
F. J. Maksoud, M. F. V. d. l. Paz, A. J. Hann, J. Thanarak, G. C. Reilly, F. Claeyssens, N. H. Green, Y. S. Zhang, J. Mater. Chem. B 2022, 10, 8111.
CrossRef Google scholar
[9]
S. B. Farid, Bioceramics: for materials science and engineering, Woodhead Publishing, Sawston, UK, 2018.
[10]
T. Mays, Stud. Surf. Sci. Catal. 2017, 160, 57.
[11]
E. Babaie, S. B. Bhaduri, ACS Biomater. Sci. Eng. 2018, 4, 1.
[12]
N. Abbasi, S. Hamlet, R. M. Love, N.-T. Nguyen, J. Sci.: Adv. Mater. Devices 2020, 5, 1.
[13]
S. D. Lacey, D. J. Kirsch, Y. Li, J. T. Morgenstern, B. C. Zarket, Y. Yao, J. Dai, L. Q. Garcia, B. Liu, T. Gao, S. Xu, S. R. Raghavan, J. W. Connell, Y. Lin, L. Hu, Adv. Mater. 2018, 30, 1705651.
[14]
A. Limper, N. Weber, A. Brodersen, R. Keller, M. Wessling, J. Linkhorst, Electrochem. Commun. 2022, 134, 107176.
CrossRef Google scholar
[15]
L. C. Hwa, S. Rajoo, A. M. Noor, N. Ahmad, M. Uday, Curr. Opin. Solid State Mater. Sci. 2017, 21, 323.
CrossRef Google scholar
[16]
D. Huang, T. Liu, J. Liao, S. Maharjan, X. Xie, M. Perez, I. Anaya, S. Wang, A. T. Mayer, Z. Kang, W. Kong, V. L. Mainardi, C. E Garciamendez-Mijares, G. G. Martinez, M. Moretti, W. Zhang, Z. Gu, A. M Ghaemmaghami, Y. S. Zhang, Proc. Natl. Acad. Sci. 2021, 118, e2016146118.
[17]
S.-W. Choi, Y. S. Zhang, M. R. MacEwan, Y. Xia, Adv. Healthc. Mater. 2013, 2, 145.
CrossRef Google scholar
[18]
Y. S. Zhang, C. Zhu, Y. Xia, Adv. Mater. 2017, 29, 1701115.
[19]
B. A. Dikici and F. Claeyssens, Front. Bioeng. Biotechnol. 2020, 8, 875.
[20]
X. Mu, T. Bertron, C. Dunn, H. Qiao, J. Wu, Z. Zhao, C. Saldana, H. J. Qi, Mater. Horiz. 2017, 4, 442.
CrossRef Google scholar
[21]
Z. Dong, H. Cui, H. Zhang, F. Wang, X. Zhan, F. Mayer, B. Nestler, M. Wegener, P. A. Levkin, Nat. Commun. 2021, 12, 247.
[22]
M. Costantini, J. Jaroszewicz, Ł. Kozoń, K. Szlăzak, W. Święszkowski, P. Garstecki, C. Stubenrauch, A. Barbetta, J. Guzowski, Angew. Chem. Int. Ed. 2019, 58, 7620.
CrossRef Google scholar
[23]
M. Marcotulli, M. C. Tirelli, M. Volpi, J. Jaroszewicz, C. Scognamiglio, P. Kasprzycki, K. Karnowski, W. Święszkowski, G. Ruocco, M. Costantini, G. Cidonio, A. Barbetta, Adv. Mater. Technol. 2023, 8, 2201244.
[24]
Y. S. Zhang, G. Haghiashtiani, T. Hübscher, D. J. Kelly, J. M. Lee, M. Lutolf, M. C. McAlpine, W. Y. Yeong, M. Zenobi-Wong, J. Malda, Nat. Rev. Dis. Primers. 2021, 1, 75.
[25]
C. Yu, J. Schimelman, P. Wang, K. L. Miller, X. Ma, S. You, J. Guan, B. Sun, W. Zhu, S. Chen, Chem. Rev. 2020, 120, 10695.
CrossRef Google scholar
[26]
R. J. Mondschein, A. Kanitkar, C. B. Williams, S. S. Verbridge, T. E. Long, Biomaterials 2017, 140, 170.
CrossRef Google scholar
[27]
A. Bagheri, J. Jin, ACS Appl. Polym. Mater. 2019, 1, 593.
CrossRef Google scholar
[28]
Y. Bao, N. Paunovivć, J. C. Leroux, Adv. Funct. Mater. 2022, 32, 2109864.
[29]
W. Li, M. Wang, H. Ma, F. A Chapa-Villarreal, A. O. Lobo, Y. S. Zhang, iScience 2023, 26, 106039.
CrossRef Google scholar
[30]
W. L. Ng, J. M. Lee, M. Zhou, Y.-W. Chen, K.-X. A. Lee, W. Y. Yeong, Y.-F. Shen, Biofabrication 2020, 12, 022001.
CrossRef Google scholar
[31]
W. Li, L. S. Mille, J. A. Robledo, T. Uribe, V. Huerta, Y. S. Zhang, Adv. Healthc. Mater. 2020, 9, 2000156.
[32]
A. K. Miri, D. Nieto, L. Iglesias, H. G. Hosseinabadi, S. Maharjan, G. U Ruiz-Esparza, P. Khoshakhlagh, A. Manbachi, M. R. Dokmeci, S. Chen, S. R. Shin, Y. S. Zhang, A. Khademhosseini, Adv. Mater. 2018, 30, 1800242.
[33]
M. Wang, W. Li, L. S. Mille, T. Ching, Z. Luo, G. Tang, C. E Garciamendez-Mijares, A. Lesha, M. Hashimoto, Y. S. Zhang, Adv. Mater. 2022, 34, 2107038.
[34]
J. Liu, H. H. Hwang, P. Wang, G. Whang, S. Chen, Lab Chip 2016, 16, 1430.
CrossRef Google scholar
[35]
G. Ying, N. Jiang, C. Parra-Cantu, G. Tang, J. Zhang, H. Wang, S. Chen, N.-P. Huang, J. Xie, Y. S. Zhang, Adv. Funct. Mater. 2020, 30, 2003740.
[36]
R. Levato, K. S. Lim, W. Li, A. U. Asua, L. B. Peña, M. Wang, M. Falandt, P. N. Bernal, D. Gawlitta, Y. S. Zhang, T. B. Woodfield, J. Malda, Mater. Today Bio. 2021, 12, 100162.
CrossRef Google scholar
[37]
Q. Liu, L. S. Mille, C. Villalobos, I. Anaya, M. Vostatek, S. Yi, W. Li, J. Liao, H. Wu, Y. Song, L. Xiong, Y. S. Zhang, Biodes. Manuf. 2023, 6, 373.
CrossRef Google scholar
[38]
L. Shao, R. Hou, Y. Zhu, Y. Yaoa, Biomater. Sci. 2021, 9, 6763.
CrossRef Google scholar
[39]
M. Wang, W. Li, J. Hao, A. Gonzales III, Z. Zhao, R. S. Flores, X. Kuang, X. Mu, T. Ching, G. Tang, Z. Luo, C. E Garciamendez-Mijares, J. K. Sahoo, M. F. Wells, G. Niu, A. Prajwal Agrawal, Nat. Commun. 2022, 13, 3317.
[40]
A. Mata, A. J. Fleischman, S. Roy, J. Micromech. Microeng. 2006, 16, 276.
CrossRef Google scholar
[41]
Y. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 152.
[42]
M. Constantini, J. Guzowski, P. J. Zuk, P. Mozetic, S. De Panfilis, J. Jaroszewicz, M. Heljak, M. Massimi, M. Pierron, M. Trombetta, M. Dentini, W. Święszkowski, A. Rainer, P. Garstecki, A. Barbetta, Adv. Funct. Mater. 2018, 28, 1800874.
[43]
G. Ying, N. Jiang, C. Yu, Y. S. Zhang, Biodes. Manuf. 2018, 1, 215.
CrossRef Google scholar
[44]
H. Lin, D. Zhang, P. G. Alexander, G. Yang, J. Tan, A. W.-M. Cheng, R. S. Tuan, Biomaterials 2013, 34, 331.
CrossRef Google scholar
[45]
L. Ouyang, J. P. Wojciechowski, J. Tang, Y. Guo, M. M. Stevens, Adv. Healthc. Mater. 2022, 11, 2200027.
[46]
J. Gong, C. C. L. Schuurmans, A. M. van Genderen, X. Cao, W. Li, F. Cheng, J. J. He, A. López, V. Huerta, J. Manríquez, R. Li, H. Li, C. Delavaux, S. Sebastian, P. E. Capendale, H. Wang, J. Xie, M. Yu, R. Masereeuw, T. Vermonden, Y. S. Zhang, Nat. Commun. 2020, 11, 1267.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/