Self-assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic-resistant bacteria

Tiantian Wu, Yu Fu, Shuang Guo, Yanqiang Shi, Yuxin Zhang, Zhijin Fan, Bin Yang, Baoquan Ding, Yuhui Liao

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 402. DOI: 10.1002/agt2.402
RESEARCH ARTICLE

Self-assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic-resistant bacteria

Author information +
History +

Abstract

Antibiotic resistance is a major challenge in the clinical treatment of bacterial infectious diseases. Herein, we constructed a multifunctional DNA nanoplatform as a versatile carrier for bacteria-specific delivery of clinical antibiotic ciprofloxacin (CIP) and classic nanoantibiotic silver nanoparticles (AgNP). In our rational design, CIP was efficiently loaded in the self-assembly double-bundle DNA tetrahedron through intercalation with DNA duplex, and single-strand DNA-modified AgNP was embedded in the cavity of the DNA tetrahedron through hybridization. With the site-specific assembly of targeting aptamer in the well-defined DNA tetrahedron, the bacteria-specific dual-antibiotic delivery system exhibited excellent combined bactericidal properties. With enhanced antibiotic accumulation through breaking the out membrane of bacteria, the antibiotic delivery system effectively inhibited biofilm formation and promoted the healing of infected wounds in vivo. This DNAbased antibiotic delivery system provides a promising strategy for the treatment of antibiotic-resistant infections.

Keywords

antibiotic resistance / anti-infection therapy / biofilm / DNA nanotechnology / targeted delivery

Cite this article

Download citation ▾
Tiantian Wu, Yu Fu, Shuang Guo, Yanqiang Shi, Yuxin Zhang, Zhijin Fan, Bin Yang, Baoquan Ding, Yuhui Liao. Self-assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic-resistant bacteria. Aggregate, 2024, 5(1): 402 https://doi.org/10.1002/agt2.402

References

[1]
R. E. Baker, A. S. Mahmud, I. F. Miller, M. Rajeev, F. Rasambainarivo, B. L. Rice, S. Takahashi, A. J. Tatem, C. E. Wagner, L.-F. Wang, A. Wesolowski, C. J. E. Metcalf, Nat. Rev. Microbiol. 2022, 20, 193.
CrossRef Google scholar
[2]
A. R. Kirtane, M. Verma, P. Karandikar, J. Furin, R. Langer, G. Traverso, Nat. Nanotechnol. 2021, 16, 369.
CrossRef Google scholar
[3]
E. K. Perry, L. A. Meirelles, D. K. Newman, Nat. Rev. Microbiol. 2022, 20, 129.
CrossRef Google scholar
[4]
J. M. V Makabenta, A. Nabawy, C.-H. Li, S. Schmidt-Malan, R. Patel, V. M. Rotello, Nat. Rev. Microbiol. 2021, 19, 23.
CrossRef Google scholar
[5]
W. Gao, L. Zhang, Nat. Rev. Microbiol. 2021, 19, 5.
CrossRef Google scholar
[6]
S. Tang, J. Zheng, Adv. Healthc. Mater. 2018, 7, 1701503.
[7]
S. E. Birk, A. Boisen, L. H. Nielsen, Adv. Drug Delivery Rev. 2021, 174, 30.
CrossRef Google scholar
[8]
L. M. Stabryla, K. A. Johnston, N. A. Diemler, V. S. Cooper, J. E. Millstone, S.-J. Haig, L. M. Gilbertson, Nat. Nanotechnol. 2021, 16, 996.
CrossRef Google scholar
[9]
S. Kumar, R. K. Majhi, A. Singh, M. Mishra, A. Tiwari, S. Chawla, P. Guha, B. Satpati, H. Mohapatra, L. Goswami, C. Goswami, ACS Appl. Mater. Inter. 2019, 11, 42998.
CrossRef Google scholar
[10]
H. Zhao, M. Wang, Y. Cui, C. Zhang, Environ. Sci. Technol. 2022, 56, 5090.
CrossRef Google scholar
[11]
J. Chen, L. Yang, J. Chen, W. Liu, D. Zhang, P. Xu, T. Dai, L. Shang, Y. Yang, S. Tang, Y. Zhang, H. Lin, Z. Chen, M. Huang, Chem. Eng. J. 2019, 374, 1373.
CrossRef Google scholar
[12]
Y. N. Slavin, K. Ivanova, J. Hoyo, I. Perelshtein, G. Owen, A. Haegert, Y.-Y. Lin, S. LeBihan, A. Gedanken, U. O. Häfeli, T. Tzanov, H. Bach, ACS Appl. Mater. Inter. 2021, 13, 22098.
CrossRef Google scholar
[13]
A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, R. Zbořil, Nat Nanotechnol. 2018, 13, 65.
[14]
N. R. Kallenbach, R.-I. Ma, N. C. Seeman, Nature 1983, 305, 829.
CrossRef Google scholar
[15]
R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt, A. J. Turberfield, Science 2005, 310, 1661.
CrossRef Google scholar
[16]
A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, Nat. Nanotechnol. 2011, 6, 763.
CrossRef Google scholar
[17]
N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
[18]
Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. Mao, Nature 2008, 452, 198.
CrossRef Google scholar
[19]
Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, Chem. Rev. 2019, 119, 6459.
CrossRef Google scholar
[20]
S. Dey, C. Fan, K. V. Gothelf, J. Li, C. Lin, L. Liu, N. Liu, M. A. D. Nijenhuis, B. Saccà, F. C. Simmel, H. Yan, P. Zhan, Nat. Rev. Methods Primers 2021, 1, 13.
[21]
H. Liang, X.-B. Zhang, Y. Lv, L. Gong, R. Wang, X. Zhu, R. Yang, W. Tan, Acc. Chem. Res. 2014, 47, 1891.
CrossRef Google scholar
[22]
Y. Sun, Y. Liu, B. Zhang, S. Shi, T. Zhang, D. Zhao, T. Tian, Q. Li, Y. Lin, Bioact. Mater. 2021, 6, 2281.
CrossRef Google scholar
[23]
A. Qu, X. Wu, S. Li, M. Sun, L. Xu, H. Kuang, C. Xu, Adv. Mater. 2020, 32, 2000184.
[24]
T. Wu, Q. Liu, Y. Cao, R. Tian, J. Liu, B. Ding, ACS Appl. Mater. Inter. 2020, 12, 32461.
CrossRef Google scholar
[25]
S. Liu, Q. Jiang, X. Zhao, R. Zhao, Y. Wang, Y. Wang, J. Liu, Y. Shang, S. Zhao, T. Wu, Y. Zhang, G. Nie, B. Ding, Nat. Mater. 2021, 20, 421.
CrossRef Google scholar
[26]
J. Liu, L. Song, S. Liu, S. Zhao, Q. Jiang, B. Ding, Angew. Chem. Int. Ed. 2018, 57, 15486.
CrossRef Google scholar
[27]
Y. Xu, S. Jiang, C. R. Simmons, R. P. Narayanan, F. Zhang, A.-M. Aziz, H. Yan, N. Stephanopoulos, ACS Nano 2019, 13, 3545.
CrossRef Google scholar
[28]
Y. Liu, Y. Sun, S. Li, M. Liu, X. Qin, X. Chen, Y. Lin, Nano Lett. 2020, 20 3602.
CrossRef Google scholar
[29]
H. Lee, A. K Lytton-Jean, Y. Chen, K. T. Love, A. I. Park, E. D. Karagiannis, A. Sehgal, W. Querbes, C. S. Zurenko, M. Jayaraman, C. G. Peng, K. Charisse, A. Borodovsky, M. Manoharan, J. S. Donahoe, J. Truelove, M. Nahrendorf, R. Langer, D. G. Anderson, Nat. Nanotechnol. 2012, 7, 389.
CrossRef Google scholar
[30]
S. Zhao, R. Tian, J. Wu, S. Liu, Y. Wang, M. Wen, Y. Shang, Q. Liu, Y. Li, Y. Guo, Z. Wang, T. Wang, Y. Zhao, H. Zhao, H. Cao, Y. Su, J. Sun, Q. Jiang, B. Ding, Nat. Commun. 2021, 12, 358.
[31]
J. S. Wolfson, D. C. Hooper, Clin. Microbiol. Rev. 1989, 2, 378.
CrossRef Google scholar
[32]
R. Davis, A. Markham, J. A. Balfour, Drugs 1996, 51, 1019.
CrossRef Google scholar
[33]
S. Hernando-Amado, P. Laborda, J. R. Valverde, J. L. Martínez, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, 2109370119.
CrossRef Google scholar
[34]
T. Wu, J. Liu, M. Liu, S. Liu, S. Zhao, R. Tian, D. Wei, Y. Liu, Y. Zhao, H. Xiao, B. Ding, Angew. Chem. Int. Ed. 2019, 58, 14224.
CrossRef Google scholar
[35]
J. Liu, L. Song, S. Liu, Q. Jiang, Q. Liu, N. Li, Z.-G. Wang, B. Ding, Nano Lett. 2018, 18, 3328.
CrossRef Google scholar
[36]
Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. Alvarez, Nano Lett. 2012, 12, 4271.
CrossRef Google scholar
[37]
E. Denamur, O. Clermont, S. Bonacorsi, D. Gordon, Nat. Rev. Microbiol. 2021, 19, 37
[38]
L. H. Caitlyn, T. A. Mark, L. T. M. Harry, A. B. Michael, Clin. Microbiol. Rev. 2021, 34, 00234-20.
[39]
A. H. Holmes, L. S. P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P. J. Guerin, L. J. V. Piddock, Lancet 2016, 387, 176.
CrossRef Google scholar
[40]
J. C. Nwabuife, C. A. Omolo, T. Govender, J. Control. Release 2022, 349, 338.
CrossRef Google scholar
[41]
B. Le Ouay, F. Stellacci, Nano Today 2015, 10, 339.
CrossRef Google scholar
[42]
L. Liu, W. Li, X. He, J. Yang, N. Liu, Small 2022, 18, 2104205.
[43]
D. Panacek, L. Hochvaldova, A. Bakandritsos, T. Malina, M. Langer, J. Belza, J. Martincova, R. Vecerova, P. Lazar, K. Polakova, J. Kolarik, L. Valkova, M. Kolar, M. Otyepka, A. Panacek, R. Zboril, Adv. Sci. 2021, 8, 2003090.
[44]
H. S. Gold, R. C. Moellering, New Engl. J. Med. 1996, 335, 1445.
CrossRef Google scholar
[45]
D. G. J Larsson, C.-F. Flach, Nat. Rev. Microbiol. 2022, 20, 257.
CrossRef Google scholar
[46]
A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V. M. Rotello, Chem. Soc. Rev. 2019, 48, 415.
CrossRef Google scholar
[47]
H. C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, S. Kjelleberg, Nat. Rev. Microbiol. 2016, 14, 563.
CrossRef Google scholar
[48]
K. Sauer, P. Stoodley, D. M. Goeres, L. Hall-Stoodley, M. Burmølle, P. S. Stewart, T. Bjarnsholt, Nat. Rev. Microbiol. 2022, 20, 608.
CrossRef Google scholar
[49]
Y. Liu, L. Shi, L. Su, H. C. van der Mei, P. C. Jutte, Y. Ren, H. J. Busscher, Chem. Soc. Rev. 2019, 48, 428.
CrossRef Google scholar
[50]
S. Darvishi, S. Tavakoli, M. Kharaziha, H. H. Girault, C. F. Kaminski, I. Mela, Angew. Chem. Int. Ed. 2021, 61, 202112218.
[51]
J. Li, H. Shen, H. Zhou, R. Shi, C. Wu, P. K. Chu, Mat. Sci. Eng. R 2023, 152, 100712.
CrossRef Google scholar
[52]
Z.-R. Li, J. Sun, Y. Du, A. Pan, L. Zeng, R. Maboudian, R. A. Burne, P.-Y. Qian, W. Zhang, Nat. Chem. Biol. 2021, 17, 576.
CrossRef Google scholar
[53]
C. Tu, H. Lu, T. Zhou, W. Zhang, L. Deng, W. Cao, Z. Yang, Z. Wang, X. Wu, J. Ding, F. Xu, C. Gao, Biomaterials 2022, 286, 121597.
CrossRef Google scholar
[54]
H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou, H. Wang, Y. Xu, C. Wang, J. Wang, Z. Liu, Biomaterials 2020, 258, 120286.
CrossRef Google scholar
[55]
S. Agnihotri, S. Mukherji, S. Mukherji, RSC Adv. 2014, 4, 3974.
CrossRef Google scholar
[56]
S. Pal, Z. Deng, B. Ding, H. Yan, Y. Liu, Angew Chem. Int. Ed. 2010, 49, 2700.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/