Aggregation-induced delayed electrochemiluminescence of organic dots in aqueous media

Hang Gao, Shen-Yu Shi, Shu-Min Wang, Qian-Qian Tao, Hui-Li Ma, Jun Hu, Hong-Yuan Chen, Jing-Juan Xu

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 394. DOI: 10.1002/agt2.394
RESEARCH ARTICLE

Aggregation-induced delayed electrochemiluminescence of organic dots in aqueous media

Author information +
History +

Abstract

Full utilization of the excited species at both singlet states (1R*) and triplet states (3R*) is crucial to improving electrochemiluminescence (ECL) efficiency but is challenging for organic luminescent materials. Here, an aggregation-induced delayed ECL (AIDECL) active organic dot (OD) containing a benzophenone acceptor and dimethylacridine donor is reported, which shows high ECL efficiency via reverse intersystem crossing (RISC) of non-emissive 3R* to emissive 1R*, overcoming the spin-forbidden radiative decay from 3R*. By introducing dual donor-acceptor pairs into luminophores, it is found that nonradiative pathway could be further suppressed via enhanced intermolecular weak interactions, and multiple spin-up conversion channels could be activated. As a consequence, the obtained OD enjoys a 6.8-fold higher ECL efficiency relative to the control AIDECL-active OD. Single-crystal studies and theoretical calculations reveal that the enhanced AIDECL behaviors come from the acceleration of both radiative transition and RISC. This work represents a major step towards purely organic, high-efficiency ECL dyes and a direction for the design of next-generation ECL dyes at the molecular level.

Keywords

aggregation-induced delayed electrochemiluminescence / benzophenone / dimethylacridine / organic dots / reverse intersystem crossing

Cite this article

Download citation ▾
Hang Gao, Shen-Yu Shi, Shu-Min Wang, Qian-Qian Tao, Hui-Li Ma, Jun Hu, Hong-Yuan Chen, Jing-Juan Xu. Aggregation-induced delayed electrochemiluminescence of organic dots in aqueous media. Aggregate, 2024, 5(1): 394 https://doi.org/10.1002/agt2.394

References

[1]
K. Wu, R. Chen, Z. Zhou, X. Chen, Y. Lv, J. Ma, Y. Shen, S. Liu, Y. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202217078.
[2]
X. Wei, K. Chu, J. R. Adsetts, H. Li, X. Kang, Z. Ding, M. Zhu, J. Am. Chem. Soc. 2022, 144, 20421.
CrossRef Google scholar
[3]
Y. Zhao, J. Descamps, S. Ababou-Girard, J.-F. Bergamini, L. Santinacci, Y. Léger, N. Sojic, G. Loget, Angew. Chem. Int. Ed. 2022, 61, e202201865.
[4]
L. Yang, B. Zhang, L. Fu, K. Fu, G. Zou, Angew. Chem. Int. Ed. 2019, 58, 6901.
CrossRef Google scholar
[5]
M. Hesari, Z. Ding, J. Am. Chem. Soc. 2021, 143, 19474.
CrossRef Google scholar
[6]
H. Peng, Z. Huang, Y. Sheng, X. Zhang, H. Deng, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2019, 58, 11691.
CrossRef Google scholar
[7]
Y. Wang, G. Zhao, H. Chi, S. Yang, Q. Niu, D. Wu, W. Cao, T. Li, H. Ma, Q. Wei, J. Am. Chem. Soc. 2021, 143, 504.
CrossRef Google scholar
[8]
H. Gao, N. Zhang, J. B. Pan, Y. W. Quan, Y. X. Cheng, H. Y. Chen, J. J. Xu, ACS Appl. Mater. Interfaces 2020, 12, 54012.
CrossRef Google scholar
[9]
H. Gao, N. Zhang, Y. Li, W. Zhao, Y. Quan, Y. Cheng, H.-Y. Chen, J.-J. Xu, Sci. China Chem. 2020, 63, 715.
CrossRef Google scholar
[10]
S.-Y. Ji, J.-B. Pan, H.-Z. Wang, W. Zhao, H.-Y. Chen, J.-J. Xu, CCS Chem. 2022, 4, 3076.
CrossRef Google scholar
[11]
R. Ishimatsu, S. Matsunami, T. Kasahara, J. Mizuno, T. Edura, C. Adachi, K. Nakano, T. Imato, Angew. Chem. Int. Ed. 2014, 53, 6993.
CrossRef Google scholar
[12]
W. Guo, H. Ding, P. Zhou, Y. Wang, B. Su, Angew. Chem. Int. Ed. 2020, 59, 6745.
CrossRef Google scholar
[13]
W. Guo, H. Ding, C. Gu, Y. Liu, X. Jiang, B. Su, Y. Shao, J. Am. Chem. Soc. 2018, 140, 15904.
CrossRef Google scholar
[14]
J. Dong, Y. Lu, Y. Xu, F. Chen, J. Yang, Y. Chen, J. Feng, Nature 2021, 596, 244.
CrossRef Google scholar
[15]
Y. Liu, H. Zhang, B. Li, J. Liu, D. Jiang, B. Liu, N. Sojic, J. Am. Chem. Soc. 2021, 143, 17910.
CrossRef Google scholar
[16]
H. Qi, C. Zhang, Z. Huang, L. Wang, W. Wang, A. J. Bard, J. Am. Chem. Soc. 2016, 138, 1947.
CrossRef Google scholar
[17]
F. Rizzo, F. Polo, G. Bottaro, S. Fantacci, S. Antonello, L. Armelao, S. Quici, F. Maran, J. Am. Chem. Soc. 2017, 139, 2060.
CrossRef Google scholar
[18]
J. M. Wong, R. Zhang, P. Xie, L. Yang, M. Zhang, R. Zhou, R. Wang, Y. Shen, B. Yang, H.-B. Wang, Z. Ding, Angew. Chem. Int. Ed. 2020, 59, 17461.
CrossRef Google scholar
[19]
S. Carrara, A. Aliprandi, C. F. Hogan, L. De Cola, J. Am. Chem. Soc. 2017, 139, 14605.
CrossRef Google scholar
[20]
N. Wang, Z. Wang, L. Chen, W. Chen, Y. Quan, Y. Cheng, H. Ju, Chem. Sci. 2019, 10, 6815.
CrossRef Google scholar
[21]
Z. Wang, J. Pan, Q. Li, Y. Zhou, S. Yang, J.-J. Xu, D. Hua, Adv. Funct. Mater. 2020, 30, 2000220.
[22]
N. Zhang, H. Gao, Y.-L. Jia, J.-B. Pan, X.-L. Luo, H.-Y. Chen, J.-J. Xu, Anal. Chem. 2021, 93, 6857.
CrossRef Google scholar
[23]
N. Zhang, Z.-Y. Zhao, H. Gao, Y. Yu, J.-B. Pan, H.-Y. Chen, J.-J. Xu, J. Electroanal. Chem. 2021, 900, 115743.
CrossRef Google scholar
[24]
L. Cui, J. Zhou, C.-c. Li, S. Deng, W. Gao, X. Zhang, X. Luo, X. Wang, C.-y. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 28782.
CrossRef Google scholar
[25]
L. Cui, S. Yu, W. Gao, X. Zhang, S. Deng, C.-y. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 7966.
CrossRef Google scholar
[26]
Y.-J. Li, W.-R. Cui, Q.-Q. Jiang, Q. Wu, R.-P. Liang, Q.-X. Luo, J.-D. Qiu, Nat. Commun. 2021, 12, 4735.
[27]
Y.-J. Li, W.-R. Cui, Q.-Q. Jiang, R.-P. Liang, X.-J. Li, Q. Wu, Q.-X. Luo, J. Liu, J.-D. Qiu, ACS Appl. Mater. Interfaces 2021, 13, 47921.
CrossRef Google scholar
[28]
W.-R. Cui, Y.-J. Li, Q.-Q. Jiang, Q. Wu, R.-P. Liang, Q.-X. Luo, L. Zhang, J. Liu, J.-D. Qiu, Cell Rep. Phys. Sci. 2022, 3, 100630.
CrossRef Google scholar
[29]
J.-L. Zhang, Y. Yang, W.-B. Liang, L.-Y. Yao, R. Yuan, D.-R. Xiao, Anal. Chem. 2021, 93, 3258.
CrossRef Google scholar
[30]
J.-L. Liu, J.-Q. Zhang, Z.-L. Tang, Y. Zhuo, Y.-Q. Chai, R. Yuan, Chem. Sci. 2019, 10, 4497.
CrossRef Google scholar
[31]
J.-L. Liu, J.-Q. Zhang, Y. Zhou, D.-R. Xiao, Y. Zhuo, Y.-Q. Chai, R. Yuan, Anal. Chem. 2021, 93, 10890.
CrossRef Google scholar
[32]
Z. Han, Z. Yang, H. Sun, Y. Xu, X. Ma, D. Shan, J. Chen, S. Huo, Z. Zhang, P. Du, X. Lu, Angew. Chem. Int. Ed. 2019, 58, 5915.
CrossRef Google scholar
[33]
Y. Zhang, Y. Zhao, Z. Han, R. Zhang, P. Du, Y. Wu, X. Lu, Angew. Chem. Int. Ed. 2020, 59, 23261.
CrossRef Google scholar
[34]
X. Wei, M.-J. Zhu, Z. Cheng, M. Lee, H. Yan, C. Lu, J.-J. Xu, Angew. Chem. Int. Ed. 2019, 58, 3162.
CrossRef Google scholar
[35]
B. Zhang, Y. Kong, H. Liu, B. Chen, B. Zhao, Y. Luo, L. Chen, Y. Zhang, D. Han, Z. Zhao, B. Z. Tang, L. Niu, Chem. Sci. 2021, 12, 13283.
CrossRef Google scholar
[36]
H. Liu, L. Wang, H. Gao, H. Qi, Q. Gao, C. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 44324.
CrossRef Google scholar
[37]
Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
[38]
S. Y. Lee, T. Yasuda, H. Nomura, C. Adachi, Appl. Phys. Lett. 2012, 101, 093306.
CrossRef Google scholar
[39]
S. Lin, Q. Ou, Z. Shuai, ACS Mater. Lett. 2022, 4, 487.
CrossRef Google scholar
[40]
R. Jiang, X. Wu, H. Liu, J. Guo, D. Zou, Z. Zhao, B. Z. Tang, Adv. Sci. 2022, 9, 2104435.
[41]
J.-H. Luo, Q. Li, S.-H. Chen, R. Yuan, ACS Appl. Mater. Interfaces 2019, 11, 27363.
CrossRef Google scholar
[42]
X. Hong, D. Zhang, C. Yin, Q. Wang, Y. Zhang, T. Huang, J. Wei, X. Zeng, G. Meng, X. Wang, G. Li, D. Yang, D. Ma, L. Duan, Chem 2022, 8, 1705.
CrossRef Google scholar
[43]
H. Wu, X.-C. Fan, H. Wang, F. Huang, X. Xiong, Y.-Z. Shi, K. Wang, J. Yu, X.-H. Zhang, Aggregate 2023, 4, e243.
[44]
S.-Y. Yang, Z.-Q. Feng, Z. Fu, K. Zhang, S. Chen, Y.-J. Yu, B. Zou, K. Wang, L.-S. Liao, Z.-Q. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202206861.
[45]
Z. Cai, X. Wu, H. Liu, J. Guo, D. Yang, D. Ma, Z. Zhao, B. Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 23635.
CrossRef Google scholar
[46]
Q. Wu, T. Zhang, Q. Peng, D. Wang, Z. Shuai, Phys. Chem. Chem. Phys. 2014, 16, 5545.
CrossRef Google scholar
[47]
Z. Yang, Z. Chi, Z. Mao, Y. Zhang, S. Liu, J. Zhao, M. P. Aldred, Z. Chi, Mater. Chem. Front. 2018, 2, 861.
CrossRef Google scholar
[48]
A. Zanut, A. Fiorani, S. Canola, T. Saito, N. Ziebart, S. Rapino, S. Rebeccani, A. Barbon, T. Irie, H.-P. Josel, F. Negri, M. Marcaccio, M. Windfuhr, K. Imai, G. Valenti, F. Paolucci, Nat. Commun. 2020, 11, 2668.
[49]
Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Science 2002, 296, 1293.
CrossRef Google scholar
[50]
N. Gao, H. Zeng, X. Wang, Y. Zhang, S. Zhang, R. Cui, M. Zhang, L. Mao, Angew. Chem. Int. Ed. 2022, 61, e202204485.
[51]
H. Peng, Z. Huang, H. Deng, W. Wu, K. Huang, Z. Li, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 9982.
CrossRef Google scholar
[52]
H. Gao, N. Zhang, J. Hu, J.-B. Pan, Y.-X. Cheng, H.-Y. Chen, J.-J. Xu, ACS Appl. Nano Mater. 2021, 4, 7244.
CrossRef Google scholar
[53]
Y. Shi, H. Ma, Z. Sun, W. Zhao, G. Sun, Q. Peng, Angew. Chem. Int. Ed. 2022, 61, e202213463.
[54]
L. Zhan, Z. Chen, S. Gong, Y. Xiang, F. Ni, X. Zeng, G. Xie, C. Yang, Angew. Chem. Int. Ed. 2019, 58, 17651.
CrossRef Google scholar
[55]
J. Guo, J. Fan, L. Lin, J. Zeng, H. Liu, C.-K. Wang, Z. Zhao, B. Z. Tang, Adv. Sci. 2019, 6, 1801629.
[56]
W. Miao, J.-P. Choi, A. J. Bard, J. Am. Chem. Soc. 2002, 124, 14478.
[57]
C. Jiang, J. Miao, D. Zhang, Z. Wen, C. Yang, K. Li, Research 2022, 2022, 9892802.
[58]
P. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042.
CrossRef Google scholar
[59]
L. Gan, Z. Xu, Z. Wang, B. Li, W. Li, X. Cai, K. Liu, Q. Liang, S.-J. Su, Adv. Funct. Mater. 2019, 29, 1808088.
[60]
Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.
CrossRef Google scholar
[61]
G. Pan, Z. Yang, H. Liu, Y. Wen, X. Zhang, Y. Shen, C. Zhou, S.-T. Zhang, B. Yang, J. Phys. Chem. Lett. 2022, 13, 1563.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/