In-fiber structured particles and filament array have been recently emerging, providing unique advantages of feasible fabrication, diverse structures and sophisticated functionalities. This review will focus on the progress of this topic mainly from the perspective of fluid instabilities. By suppressing the capillary instability, the uniform layered structures down to nanometers are attained with the suitable materials selection. On the other hand, by utilizing capillary instability via post-drawing thermal treatment, the unprecedent structured particles can be designed with multimaterials for multifunctional fiber devices. Moreover, an interesting filamentation instability of a stretching viscous sheet has been identified during thermal drawing, resulting in an array of filaments. This review may inspire more future work to produce versatile devices for fiber electronics, either at a single fiber level or in large-scale fabrics and textiles, simply by manipulating and controlling fluid instabilities.
The development of effective and reusable photocatalysts with broad-spectra activity has attracted attention. Herein, we have constructed n-TiO2/p-Ag2O junction on carbon fiber (CF) cloth as an efficient and recyclable photocatalyst. With CF cloth as the substrate, TiO2 nanorods (length: 1–2 µm) are prepared by a hydrothermal process, and the in-situ growth of Ag2O nanoparticles (10–20 nm) is then realized by chemical bath deposition route. The flexible CF/TiO2/Ag2O cloth (area: 4 × 4 cm2) shows a broad and strong photo-absorption (200–1000 nm). Under the illumination of visible-light (λ > 400 nm), CF/TiO2/Ag2O cloth can efficiently eliminate 99.2% rhodamine B (RhB), 99.4% acid orange 7 (AO7), 87.6% bisphenol A (BPA), and 89.5% hexavalent chromium (Cr6+) in 100 min, superior to CF/Ag2O cloth (83.5% RhB, 60.0% AO7, 31.2% BPA and 41.8% Cr6+). In particular, under the NIR-light illumination (980 nm laser), CF/TiO2/Ag2O cloth can remove 70.9% AO7 and 60.0% Cr6+ in 100 min, which are significantly higher than those by CF/Ag2O cloth (19.8% AO7 and 18.9% Cr6+). In addition, CF/TiO2/Ag2O cloth (diameter: 10 cm), as a filter-membrane, can effectively wipe off 94.4% flowing RhB solution (rate: ~ 1 L h− 1) at 6th filtering/degrading grade. Thus, CF/TiO2/Ag2O cloth can be used as a Vis–NIR-responded filter-membrane-shaped photocatalyst with high-efficiency for purifying wastewater.
Triboelectric nanogenerator (TENG) has attracted considerable attention in wearable electronics and energy harvesting associated with human activities. Fiber/yarn electrodes are widely applied in the wearable TENG system, which remains a challenge to guarantee mechanical ductility and stable electrical functions during long-term use. Inspired by high quality violin strings core-sheath design, silk/stainless-steel integrated yarns (SSYs) are continuously produced by simple co-wrapping spinning technique, which shows excellent mechanical strength, flexibility, conductivity, weaveability and triboelectric function. The SSYs can be modified to achieve tunable surface morphology. Finally, TENG cables have been fabricated, which can be stretched up to 100% and reveal a fast responsiveness to the stretching extent (voltage output of about 0.2, 0.6, 1.8, 2.8 V at 13%, 25%, 38%, 50% stretching, respectively). The TENG cables integrated textiles can not only harvest the energy generated by body movement but can also work as a self-supplied motion detector.
Acrylonitrile–butadiene–styrene (ABS) is a commercial polymer for widely industrial applications due to its good mechanical and physical properties. However, there are only countable reports regarding its fibers from electrospinning. Comprehensive investigation on its optimized electrospinning parameters is missing. Herein, ABS fibers with different fiber diameters were produced by electrospinning. The electrospinning conditions, including the solvents, solution concentrations and amounts of different salt additives, have been comprehensively investigated. The morphologies of electrospun ABS fibers are studied by scanning electron microscopy and Raman spectroscopy. Different fiber diameters and coating densities are applied for filtration applications, which showed excellent filtration performance. The filtration efficiency of up to 99%, low pressure drop of < 30 Pa, and high filtration quality factor of up to 0.477 are achieved from the electrospun ABS fibers coated on microfibrous polypropylene substrates. In addition, the electrospun ABS fibers also shows good thermal stability and other applications such as oil/water separation.