Optimization of Wet-Spun PEDOT:PSS Fibers for Thermoelectric Applications Through Innovative Triple Post-treatments

Yu-Yu Deng, Xiao-Lei Shi, Ting Wu, Yicheng Yue, Wei-Di Liu, Meng Li, Fang Yue, Pei Huang, Qingfeng Liu, Zhi-Gang Chen

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (5) : 1616-1628. DOI: 10.1007/s42765-024-00441-5
Research Article

Optimization of Wet-Spun PEDOT:PSS Fibers for Thermoelectric Applications Through Innovative Triple Post-treatments

Author information +
History +

Abstract

Owing to the high flexibility, low thermal conductivity, and tunable electrical transport property, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) exhibits promising potential for designing flexible thermoelectric devices in the form of films or fibers. However, the low Seebeck coefficient and power factor of PEDOT:PSS have restricted its practical applications. Here, we sequentially employ triple post-treatments with concentrated sulfuric acid (H2SO4), sodium borohydride (NaBH4), and 1-ethyl-3-methylimidazolium dichloroacetate (EMIM:DCA) to enhance the thermoelectric performance of flexible PEDOT:PSS fibers with a high power factor of (55.4 ± 1.8) μW m−1 K−2 at 25 °C. Comprehensive characterizations confirm that excess insulating PSS can be selectively removed after H2SO4 and EMIM:DCA treatments, which induces conformational changes to increase charge carrier mobility, leading to enhanced electrical conductivity. Simultaneously, NaBH4 treatment is employed to adjust the oxidation level, further optimizing the Seebeck coefficient. Additionally, the assembled flexible fiber thermoelectric devices show an output power density of (60.18 ± 2.79) nW cm−2 at a temperature difference of 10 K, proving the superior performance and usability of the optimized fibers. This work provides insights into developing high-performance organic thermoelectric materials by modulating polymer chains.

Keywords

Thermoelectric / PEDOT:PSS / Fiber / Wet spin / Post-treatment

Cite this article

Download citation ▾
Yu-Yu Deng, Xiao-Lei Shi, Ting Wu, Yicheng Yue, Wei-Di Liu, Meng Li, Fang Yue, Pei Huang, Qingfeng Liu, Zhi-Gang Chen. Optimization of Wet-Spun PEDOT:PSS Fibers for Thermoelectric Applications Through Innovative Triple Post-treatments. Advanced Fiber Materials, 2024, 6(5): 1616‒1628 https://doi.org/10.1007/s42765-024-00441-5

References

[1]
Shi XL, Cao T, Chen W, Hu B, Sun S, Liu WD, Li M, Lyu W, Hong M, Chen ZG. Advances in flexible inorganic thermoelectrics. EcoEnergy, 2023, 1: 296-343,
CrossRef Google scholar
[2]
Yang Q, Yang S, Qiu P, Peng L, Wei T-R, Zhang Z, Shi X, Chen L. Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377: 854-858,
CrossRef Google scholar
[3]
Jiang B, Yu Y, Cui J, Liu X, Xie L, Liao J, Zhang Q, Huang Y, Ning S, Jia B, Zhu B, Bai S, Chen L, Pennycook Stephen J, He J. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371: 830-834,
CrossRef Google scholar
[4]
Liu D, Wang D, Hong T, Wang Z, Wang Y, Qin Y, Su L, Yang T, Gao X, Ge Z, Qin B, Zhao L-D. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science, 2023, 380: 841-846,
CrossRef Google scholar
[5]
Roychowdhury S, Ghosh T, Arora R, Samanta M, Xie L, Singh Niraj K, Soni A, He J, Waghmare Umesh V, Biswas K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science, 2021, 371: 722-727,
CrossRef Google scholar
[6]
Shi X-L, Sun S, Wu T, Tu J, Zhou Z, Liu Q, Chen Z-G. Weavable thermoelectrics: advances, controversies, and future developments. Mater Futures, 2024, 3: 012103,
CrossRef Google scholar
[7]
Massonnet N, Carella A, Jaudouin O, Rannou P, Laval G, Celle C, Simonato J-P. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J Mater Chem C, 2014, 2: 1278-1283,
CrossRef Google scholar
[8]
Xu S, Shi X-L, Dargusch M, Di C, Zou J, Chen Z-G. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci, 2021, 121: 100840,
CrossRef Google scholar
[9]
Gueye MN, Carella A, Faure-Vincent J, Demadrille R, Simonato J-P. Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Prog Mater Sci, 2020, 108: 100616,
CrossRef Google scholar
[10]
Okuzaki H, Harashina Y, Yan H. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J, 2009, 45: 256-261,
CrossRef Google scholar
[11]
Kim J, Jang JG, Hong JI, Kim SH, Kwak J. Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT:PSS thin-films. J Mater Sci-Mater El, 2016, 27: 6122-6127,
CrossRef Google scholar
[12]
Liu X, Shi XL, Zhang L, Liu WD, Yang Y, Chen ZG. One-step post-treatment boosts thermoelectric properties of PEDOT:PSS flexible thin films. J Mater Sci Technol, 2023, 132: 81-89,
CrossRef Google scholar
[13]
Tu S, Tian T, Lena Oechsle A, Yin S, Jiang X, Cao W, Li N, Scheel MA, Reb LK, Hou S, Bandarenka AS, Schwartzkopf M, Roth SV, Müller-Buschbaum P. Improvement of the thermoelectric properties of PEDOT:PSS films via DMSO addition and DMSO/salt post-treatment resolved from a fundamental view. Chem Eng J, 2022, 429: 132295,
CrossRef Google scholar
[14]
Zhang M, Cao X, Wen M, Chen C, Wen Q, Fu Q, Deng H. Highly electrical conductive PEDOT:PSS/SWCNT flexible thermoelectric films fabricated by a high-velocity non-solvent turbulent secondary doping approach. ACS Appl Mater Interfaces, 2023, 15: 10947-10957,
CrossRef Google scholar
[15]
Li B, Yue S, Cheng H, Wu C, Ouyang J. Visible light-induced enhancement in the Seebeck coefficient of PEDOT:PSS composites with two-dimensional potassium poly-(heptazine imide). J Mater Chem A, 2022, 10: 862-871,
CrossRef Google scholar
[16]
Kim JY, Lee W, Kang YH, Cho SY, Jang KS. Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon, 2018, 133: 293-299,
CrossRef Google scholar
[17]
Xu H, Guo Y, Wu B, Hou C, Zhang Q, Li Y, Wang H. Highly integrable thermoelectric fiber. ACS Appl Mater Interfaces, 2020, 12: 33297-33304,
CrossRef Google scholar
[18]
Wen N, Fan Z, Yang S, Zhao Y, Cong T, Xu S, Zhang H, Wang J, Huang H, Li C, Pan L. Highly conductive, ultra-flexible, and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy, 2020, 78: 105361,
CrossRef Google scholar
[19]
Lv D, Zheng S, Cao C, Li K, Ai L, Li X, Yang Z, Xu Z, Yao X. Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy Environ Sci, 2022, 15: 2601-2609,
CrossRef Google scholar
[20]
Rong L, Xie X, Yuan W, Fu Y. Superior, environmentally tolerant, flexible, and adhesive poly(ionic liquid) gel as a multifaceted underwater sensor. ACS Appl Mater Interfaces, 2022, 14: 29273-29283,
CrossRef Google scholar
[21]
Xiang S, He X, Zheng F, Lu Q. Multifunctional flexible sensors based on ionogel composed entirely of ionic liquid with long alkyl chains for enhancing mechanical properties. Chem Eng J, 2022, 439: 135644,
CrossRef Google scholar
[22]
Zhu H, Li L, Shi M, Xiao P, Liu Y, Yan X. Coupling of graphene quantum dots with MnO2 nanosheets for boosting capacitive storage in ionic liquid electrolyte. Chem Eng J, 2022, 437: 135301,
CrossRef Google scholar
[23]
Zhao C, Zhang C, Wang P, Chen Z, Wang Y, Zhu J, Gao C, Gao Q. Wet-spun PEDOT:PSS/ionic liquid composite fibers for wearable e-textiles. Eur Polym J, 2023, 190: 112025,
CrossRef Google scholar
[24]
Chen H, Xu H, Luo M, Wang W, Qing X, Lu Y, Liu Q, Yang L, Zhong W, Li M, Wang D. Highly conductive, ultrastrong, and flexible wet-spun PEDOT:PSS/ionic liquid fibers for wearable electronics. ACS Appl Mater Interfaces, 2023, 15: 20346-20357,
CrossRef Google scholar
[25]
Sarabia-Riquelme R, Shahi M, Brill JW, Weisenberger MC. Effect of drawing on the electrical, thermoelectrical, and mechanical properties of wet-spun PEDOT:PSS fibers. ACS Appl Polym Mater, 2019, 1: 2157-2167,
CrossRef Google scholar
[26]
Zhang J, Seyedin S, Qin S, Lynch PA, Wang Z, Yang W, Wang X, Razal JM. Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. J Mater Chem A, 2019, 7: 6401-6410,
CrossRef Google scholar
[27]
Liu J, Jia Y, Jiang Q, Jiang F, Li C, Wang X, Liu P, Liu P, Hu F, Du Y, Xu J. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces, 2018, 10: 44033-44040,
CrossRef Google scholar
[28]
Ge R, Dong X, Sun L, Hu L, Liu T, Zeng W, Luo B, Jiang X, Jiang Y, Zhou Y. Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications. J Mater Chem C, 2020, 8: 1571-1576,
CrossRef Google scholar
[29]
Kim Y, Lund A, Noh H, Hofmann AI, Craighero M, Darabi S, Zokaei S, Park JI, Yoon M-H, Müller C. Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles. Macromol Mater Eng, 2020, 305: 1900749,
CrossRef Google scholar
[30]
Pan Y, Song Y, Jiang Q, Jia Y, Liu P, Song H, Liu G. Solvent treatment of wet-spinning PEDOT:PSS fiber towards wearable thermoelectric energy harvesting. Synth Met, 2022, 283: 116969,
CrossRef Google scholar
[31]
Liu L, Chen J, Liang L, Deng L, Chen G. A PEDOT:PSS thermoelectric fiber generator. Nano Energy, 2022, 102: 107678,
CrossRef Google scholar
[32]
Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater, 2014, 26: 2268-2272,
CrossRef Google scholar
[33]
Aasmundtveit KE, Samuelsen EJ, Pettersson LAA, Inganäs O, Johansson T, Feidenhans'l R. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Met, 1999, 101: 561-564,
CrossRef Google scholar
[34]
Kim N, Lee BH, Choi D, Kim G, Kim H, Kim JR, Lee J, Kahng YH, Lee K. Role of interchain coupling in the metallic state of conducting polymers. Phys Rev Lett, 2012, 109: 106405,
CrossRef Google scholar
[35]
Sarabia-Riquelme R, Andrews R, Anthony JE, Weisenberger MC. Highly conductive wet-spun PEDOT:PSS fibers for applications in electronic textiles. J Mater Chem C, 2020, 8: 11618-11630,
CrossRef Google scholar
[36]
Wang X, Kyaw AKK, Yin C, Wang F, Zhu Q, Tang T, Yee PI, Xu J. Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid. RSC Adv, 2018, 8: 18334-18340,
CrossRef Google scholar
[37]
Wu T, Shi XL, Liu WD, Sun S, Liu Q, Chen ZG. Dual post-treatments boost thermoelectric performance of PEDOT:PSS films and their devices. Macromol Mater Eng, 2022, 307: 2200411,
CrossRef Google scholar
[38]
Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S. In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 1999, 32: 6807-6812,
CrossRef Google scholar
[39]
Łapkowski M, Proń A. Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)—“in situ” conductivity and spectroscopic investigations. Synthetic Met, 2000, 110: 79-83,
CrossRef Google scholar
[40]
Wang X, Ge M-Q, Feng G-Y. The effects of DMSO on structure and properties of PVA/PEDOT:PSS blended fiber. Fiber Polym., 2015, 16: 2578-2585,
CrossRef Google scholar
[41]
Luo J, Billep D, Blaudeck T, Sheremet E, Rodriguez RD, Zahn DRT, Toader M, Hietschold M, Otto T, Gessner T. Chemical post-treatment and thermoelectric properties of poly(3,4-ethylenedioxylthiophene):poly(styrenesulfonate) thin films. J Appl Phys, 2014, 115: 054908,
CrossRef Google scholar
[42]
Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y. High-cnductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater, 2005, 15: 203-208,
CrossRef Google scholar
[43]
Wang Y, Yang L, Shi X, Shi X, Chen L, Dargusch M, Zou J, Chen Z-G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv Mater, 2019, 31: 1807916,
CrossRef Google scholar
[44]
Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, van Haesendonck C, Van der Auweraer M, Salaneck WR, Berggren M. The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem Mater, 2006, 18: 4354-4360,
CrossRef Google scholar
[45]
Kim GH, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater, 2013, 12: 719-723,
CrossRef Google scholar
[46]
Massonnet N, Carella A, de Geyer A, Faure-Vincent J, Simonato J-P. Metallic behaviour of acid doped highly conductive polymers. Chem Sci, 2015, 6: 412-417,
CrossRef Google scholar
[47]
van Reenen S, Scheepers M, van de Ruit K, Bollen D, Kemerink M. Explaining the effects of processing on the electrical properties of PEDOT:PSS. Org Electron, 2014, 15: 3710-3714,
CrossRef Google scholar
[48]
Fan Z, Li P, Du D, Ouyang J. Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases. Adv Energy Mater, 2017, 7: 1602116,
CrossRef Google scholar
[49]
Bubnova O, Berggren M, Crispin X. Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc, 2012, 134: 16456-16459,
CrossRef Google scholar
[50]
Zozoulenko I, Singh A, Singh SK, Gueskine V, Crispin X, Berggren M. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl Polym Mater, 2019, 1: 83-94,
CrossRef Google scholar
[51]
Lee I, Kim GW, Yang M, Kim T-S. Simultaneously enhancing the cohesion and electrical conductivity of PEDOT:PSS conductive polymer films using DMSO additives. ACS Appl Mater Interfaces, 2016, 8: 302-310,
CrossRef Google scholar
[52]
Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci, 2019, 6: 1900813,
CrossRef Google scholar
[53]
Jalili R, Razal JM, Innis PC, Wallace GG. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater, 2011, 21: 3363-3370,
CrossRef Google scholar
[54]
Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH. Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. J Mater Chem A, 2014, 2: 6532-6539,
CrossRef Google scholar
[55]
Döbbelin M, Marcilla R, Salsamendi M, Pozo-Gonzalo C, Carrasco PM, Pomposo JA, Mecerreyes D. Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films. Chem Mater, 2007, 19: 2147-2149,
CrossRef Google scholar
[56]
Badre C, Marquant L, Alsayed AM, Hough LA. Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv Funct Mater, 2012, 22: 2723-2727,
CrossRef Google scholar
[57]
Teo MY, Kim N, Kee S, Kim BS, Kim G, Hong S, Jung S, Lee K. Highly stretchable and highly conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl Mater Interfaces, 2017, 9: 819-826,
CrossRef Google scholar
[58]
Atoyo J, Burton MR, McGettrick J, Carnie MJ. Enhanced electrical conductivity and Seebeck coefficient in PEDOT:PSS via a two-step ionic liquid and NaBH4 treatment for organic thermoelectrics. Polymers, 2020, 12: 559,
CrossRef Google scholar
[59]
Al-Nimr MDA, Tashtoush BM, Jaradat AA. Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate. Energy, 2015, 90: 1239-1250,
CrossRef Google scholar
[60]
Fang H, Popere BC, Thomas EM, Mai CK, Chang WB, Bazan GC, Chabinyc ML, Segalman RA. Large-scale integration of flexible materials into rolled and corrugated thermoelectric modules. J Appl Polym Sci, 2017, 134,
CrossRef Google scholar
[61]
Beretta D, Massetti M, Lanzani G, Caironi M. Thermoelectric characterization of flexible micro-thermoelectric generators. Rev Sci Instrum, 2017, 88: 015103,
CrossRef Google scholar
[62]
Li C, Sun P, Liu C, Xu J, Wang T, Wang W, Hou J, Jiang F. Fabrication of flexible SWCNTs-Te composite films for improving thermoelectric properties. J Alloys Compd, 2017, 723: 642-648,
CrossRef Google scholar
[63]
Wang X, Meng F, Wang T, Li C, Tang H, Gao Z, Li S, Jiang F, Xu J. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting. J Alloys Compd, 2018, 734: 121-129,
CrossRef Google scholar
Funding
Queensland University of Technology

Accesses

Citations

Detail

Sections
Recommended

/