Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment
Yerim Jang, Soonjong Roh, Younghak Cho, Youngmee Jung, Kangwon Lee, Nakwon Choi, Jin Yoo, Hyejeong Seong
Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment
An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-co-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.
Electrospun nanofiber / Initiated chemical vapor deposition / Poly(l-lactide-co-ε-caprolactone) / Post-surface modification / Neural cells
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
/
〈 | 〉 |