Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management

Ki-Hyun Ryu, Minsung Kang, Jungwon Kim, Nam-Ho You, Se Gyu Jang, Kwang-Un Jeong, Seokhoon Ahn, Dae-Yoon Kim

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (5) : 1509-1520. DOI: 10.1007/s42765-024-00432-6
Research Article

Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management

Author information +
History +

Abstract

Space exploration provides unparalleled opportunities for unraveling the mysteries of our origins and exploring planetary systems beyond Earth. Long-distance space missions require successful protection against significant radiation exposure, necessitating the development of effective radiation shielding materials. This study developed aromatic amide polymer (AAP) and boron nitride nanotube (BNNT) composite fibers using lyotropic liquid crystal (LLC) and industrially viable wet-spinning processes. The uniaxially oriented 1D composite fibers provide the necessary continuity and pliability to fabricate 2D macroscopic textiles with low density (1.80 g cm−3), mechanical modulus (18.16 GPa), and heat stability (up to 479 °C), while exhibiting the improved thermal neutron absorption cross-section with thermal neutron-shielding performance (0.73 mm−1). These composite textiles also show high thermal conductivity (7.88 W m−1 K−1) due to their densely packed and uniaxially oriented structures. These enhanced characteristics render the fibers a highly promising material for space applications, offering robust protection for both astronauts and electronics against the dual threats of radiation and heat.

Keywords

Lyotropic liquid crystal / Robust composite material / Space radiation shielding / Thermal conductive pathway

Cite this article

Download citation ▾
Ki-Hyun Ryu, Minsung Kang, Jungwon Kim, Nam-Ho You, Se Gyu Jang, Kwang-Un Jeong, Seokhoon Ahn, Dae-Yoon Kim. Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management. Advanced Fiber Materials, 2024, 6(5): 1509‒1520 https://doi.org/10.1007/s42765-024-00432-6

References

[1]
Santomartino R, Averesch NJH, Bhuiyan M, Cockell CS, Colangelo J, Gumulya Y, Lehner B, Lopez-Ayala I, McMahon S, Mohanty A, Maria SRS, Urbaniak C, Volger R, Yang J, Zea L. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat Commun, 2023, 14: 1391,
CrossRef Google scholar
[2]
Levchenko I, Bazaka K, Belmonte T, Keidar M, Xu S. Advanced materials for next-generation spacecraft. Adv Mater, 2018, 30: 1802201,
CrossRef Google scholar
[3]
Millar TJ, Walsh C, Field TA. Negative ions in space. Chem Rev, 2017, 117: 1765,
CrossRef Google scholar
[4]
Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity, 2020, 6: 33,
CrossRef Google scholar
[5]
Prinzie J, Simanjuntak FM, Leroux P, Prodromakis T. Low-power electronic technologies for harsh radiation environments. Nat Electron, 2021, 4: 243,
CrossRef Google scholar
[6]
Nguyen T. Powering human settlements in space. ACS Cent Sci, 2020, 6: 450,
CrossRef Google scholar
[7]
Stallard S, Jiang H, Chen Y, Bergman TL, Li X. Exploring the design space of the effective thermal conductivity, permeability, and stiffness of high-porosity foams. Mater Des, 2023, 231,
CrossRef Google scholar
[8]
Bennett CJ, Pirim C, Orlando TM. Space-weathering of solar system bodies: a laboratory perspective. Chem Rev, 2013, 113: 9086,
CrossRef Google scholar
[9]
Leung EM, Escobar MC, Stiubianu GT, Jim SR, Vyatskikh AL, Feng Z, Garner N, Patel P, Naughton KL, Follador M, Karshalev E, Trexler MD, Gorodetsky AA. A dynamic thermoregulatory material inspired by squid skin. Nat Commun, 1947, 2019: 10
[10]
Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury PR, Marconnet A, Ruan X. Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat Commun, 2021, 12: 4915,
CrossRef Google scholar
[11]
Kim DY, Christoff-Tempesta T, Lamour G, Zuo X, Ryu KH, Ortony JH. Morphological transitions of a photoswitchable aramid amphiphile nanostructure. Nano Lett, 2021, 21: 2912,
CrossRef Google scholar
[12]
Yang B, Wang L, Zhang M, Luo J, Lu Z, Ding X. Fabrication, applications, and prospects of aramid nanofiber. Adv Funct Mater, 2020, 30: 2000186,
CrossRef Google scholar
[13]
Zhang D, Zhang S, Yapici N, Oakley R, Sharma S, Parashar V, Yap YK. Emerging applications of boron nitride nanotubes in energy harvesting, electronics, and biomedicine. ACS Omega, 2021, 6: 20722,
CrossRef Google scholar
[14]
Kim JH, Pham TV, Hwang JH, Kim CS, Kim MJ. Boron nitride nanotubes: synthesis and applications. Nano Converg., 2018, 5: 17,
CrossRef Google scholar
[15]
Cho Y, Christoff-Tempesta T, Kim DY, Lamour G, Ortony JH. Domain-selective thermal decomposition within supramolecular nanoribbons. Nat Commun, 2021, 12: 7340,
CrossRef Google scholar
[16]
Tank MJ, Reyes AN, Park JG, Scammell LR, Smith MW, Leon AD, Sweat RD. Extreme thermal stability and dissociation mechanisms of purified boron nitride nanotubes: implications for high-temperature nanocomposites. ACS Appl Nano Mater, 2022, 5: 12444,
CrossRef Google scholar
[17]
Zhang J, Uzun S, Seyedin S, Lynch PA, Akuzum B, Wang Z, Qin S, Alhabeb M, Shuck CE, Lei W, Kumbur EC, Yang W, Wang X, Dion G, Razal JM, Gogotsi Y. Additive-free MXene liquid crystals and fibers. ACS Cent Sci, 2020, 6: 254,
CrossRef Google scholar
[18]
Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, Waarbeek RFT, Jong JJD, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182,
CrossRef Google scholar
[19]
Zhu J, Cao W, Yue M, Hou Y, Han J, Yang M. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano, 2015, 9: 2489,
CrossRef Google scholar
[20]
Christoff-Tempesta T, Cho Y, Kim DY, Geri M, Lamour G, Lew AJ, Zuo X, Lindemann WR, Ortony JH. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nat Nanotechnol, 2021, 16: 447,
CrossRef Google scholar
[21]
Gulo DP, Hung NT, Chen WL, Wang S, Liu M, Kauppinen EI, Maruyama S, Chang YM, Saito R, Liu HL. Interacting phonons between layers in Raman spectra of carbon nanotubes inside boron nitride nanotubes. J Phys Chem Lett, 2023, 14: 10263,
CrossRef Google scholar
[22]
Pingrey B, Hsieh YL. Sulfated cellulose nanofibrils from chlorosulfonic acid treatment and their wet spinning into high-strength fibers. Biomacromol, 2022, 23: 1269,
CrossRef Google scholar
[23]
Kim DY, Lim SI, Jung D, Hwang JK, Kim N, Jeong KU. Self-assembly and polymer-stabilization of lyotropic liquid crystals in aqueous and non-aqueous solutions. Liq Cryst Rev, 2017, 5: 34,
CrossRef Google scholar
[24]
Roberts AD, Kelly P, Bain J, Morrison JJ, Wimpenny I, Barrow M, Woodward RT, Gresil M, Blanford C, Hay S, Blaker JJ, Yeates SG, Scrutton NS. Graphene-aramid nanocomposite fibres via superacid co-processing. Chem Commun, 2019, 55: 11703,
CrossRef Google scholar
[25]
Kleinerman O, Adnan M, Marincel DM, Ma AWK, Bengio EA, Park C, Chu SH, Pasquali M, Talmon Y. Dissolution and characterization of boron nitride nanotubes in superacid. Langmuir, 2017, 33: 14340,
CrossRef Google scholar
[26]
Green MJ, Behabtu N, Pasquali M, Adams WW. Nanotubes as polymers. Polymer, 2009, 50: 4979,
CrossRef Google scholar
[27]
Davidson ZS, Huang Y, Gross A, Martinez A, Still T, Zhou C, Collings PJ, Kamien RD, Yodh AG. Deposition and drying dynamics of liquid crystal droplets. Nat Commun, 2017, 8: 15642,
CrossRef Google scholar
[28]
Park SK, Kim SE, Kim DY, Kang SW, Shin S, Kuo SW, Hwang SH, Lee SH, Lee MH, Jeong KU. Polymer-stabilized chromonic liquid-crystalline polarizer. Adv Funct Mater, 2011, 21: 2129,
CrossRef Google scholar
[29]
lfuku S, Maeta H, lzawa H, Morimoto M, Saimoto H. Facile preparation of aramid nanofibers from Twaron fibers by a downsizing process. RSC Adv, 2014, 4: 40377,
CrossRef Google scholar
[30]
Harrison H, Lamb JT, Nowlin KS, Guenthner AJ, Ghiassi KB, Kelkar AD, Alston JR. Quantification of hexagonal boron nitride impurities in boron nitride nanotubes via FTIR spectroscopy. Nanoscale Adv, 2019, 1: 1693,
CrossRef Google scholar
[31]
Chen HJ, Bai QY, Liu MC, Wu G, Wang YZ. Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: mechanism, upcycling, closed-loop recycling. Green Chem, 2021, 23: 7646,
CrossRef Google scholar
[32]
Song Y, Li B, Yang S, Ding G, Zhang C, Xie X. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci Rep, 2015, 5: 10337,
CrossRef Google scholar
[33]
Lim H, Kim YK, Kim HS, Lee T, Hossain MM, Jeong HO, Lee HS, Cho H, Joo Y, Lee SS, Park S, Rho H, Jeong HS, Kim MJ, Ahn S, Moon SY, Kim KS, Choi SQ, Kim BJ, Jang SG. Lyotropic boron nitride nanotube liquid crystals: preparation, characterization, and wet-spinning for fabrication of composite fiber. ACS Appl Mater Interfaces, 2023, 15: 24681,
CrossRef Google scholar
[34]
Choyal VK, Choyal V, Nevhal S, Bergaley A, Kundalwal SI. Effect of aspects ratio on Young’s modulus of boron nitride nanotubes: a molecular dynamics study. Mater Today: Proc, 2020, 26: 1
[35]
Weiss P, Mohamed MP, Gobert T, Chouard Y, Singh N, Chalal T, Schmied S, Schweins M, Stegmaier T, Gresser GT, Groemer G, Sejkora N, Das S, Rampini R, Hołyńska M. Advanced materials for future lunar extravehicular activity space suit. Adv Mater Technol, 2020, 5: 2000028,
CrossRef Google scholar
[36]
Shang Y, Yang G, Su F, Feng Y, Ji Y, Liu D, Yin R, Liu C, Shen C. Multilayer polyethylene/hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos Commun, 2020, 19: 147,
CrossRef Google scholar
[37]
Huo Z, Zhao S, Zhong G, Zhang H, Hu L. Surface modified-gadolinium/boron/polyethylene composite with high shielding performance for neutron and gamma-ray. Nucl Mater Energy, 2021, 29,
CrossRef Google scholar
[38]
Soni BK, Makwana R, Mukherjee S, Barala SS, Parashari S, Chauhan R, Jodha AS, Katovsky K. Novel concrete compositions for γ-rays and neutron shielding using WC and B4C. Results Mater, 2021, 10,
CrossRef Google scholar
[39]
Cui K, Li Y, Wei W, Teng Q, Zhang T, Wu J, Kang H, Qin W, Wu X. Crystal plane engineering of MAPbl3 in epoxy-based materials for superior gamma-ray shielding performance. Light Adv Manuf, 2022, 3: 51
[40]
Bijanu A, Paulose R, Tomar AS, Agrawal V, Gowri VS, Sanghi SK, Khan R, Khan MA, Salammal ST, Mishra D. Chemically bonded tungsten-based polymer composite for X-rays shielding applications. Mater Today Commun, 2022, 32,
CrossRef Google scholar
[41]
Nambiar S, Yeow JTW. Polymer-composite materials for radiation protection. ACS Appl Mater Interfaces, 2012, 4: 5717,
CrossRef Google scholar
[42]
Avcıoğlu S. LDPE matrix composites reinforced with dysprosium-boron containing compounds for radiation shielding applications. J Alloys Compd, 2022, 927,
CrossRef Google scholar
[43]
More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP. Polymeric composite materials for radiation shielding: a review. Environ Chem Lett, 2021, 19: 2057,
CrossRef Google scholar
[44]
Liu B, Gu Y, Liu Y, Wang S, Li M. Space neutron radiation shielding property of continuous fiber and functional filler reinforced polymer composite using Monte Carlo simulation. Compos Part A, 2023, 168,
CrossRef Google scholar
[45]
Lei L, Shi S, Wang D, Meng S, Dai JG, Fu S, Hu J. Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano, 1803, 2023: 17
[46]
Chang CW, Fennimore AM, Afanasiev A, Okawa D, lkuno T, Garcia H, Li D, Majumdar A, Zettl A. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys Rev Lett, 2006, 97: 085901,
CrossRef Google scholar
[47]
Chang CW, Han WQ, Zettl A. Thermal conductivity of B-C-N and BN nanotubes. J Vac Sci Technol B, 1883, 2005: 23
[48]
Yuanpeng W, Xue Y, Qin S, Liu D, Wang X, Hu X, Li J, Wang X, Bando Y, Golberg D, Chen Y, Gogotsi Y, Lei W. BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl Mater Interfaces, 2017, 9: 43163,
CrossRef Google scholar
[49]
Terao T, Zhi C, Bando Y, Mitome M, Tang C, Golberg D. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C, 2010, 114: 4340,
CrossRef Google scholar
[50]
Hu J, lqbal MI, Sun F. Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv Funct Mater, 2020, 30: 2005033,
CrossRef Google scholar
[51]
lqbal MI, Shuo S, Jiang Y, Fei B, Xia Q, Wang X, Hu W, Hu J. Woolen respirators for thermal management. Adv Mater Technol, 2021, 6: 2100201,
CrossRef Google scholar
[52]
He H, Peng W, Liu J, Chan XY, Liu S, Lu L, Ferrand HL. Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv Mater, 2022, 34: 2205120,
CrossRef Google scholar
[53]
Su Z, Wang H, Ye X, Tian K, Huang W, Xiao C, Tian X. Enhanced thermal conductivity of functionalized-graphene/boron nitride flexible laminated composite adhesive via a facile latex approach. Compos Part A, 2017, 99: 166,
CrossRef Google scholar
[54]
Pan X, Debije MG, Schenning APHJ. High thermal conductivity in anisotropic aligned polymeric materials. ACS Appl Polym Mater, 2021, 3: 578,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/