Immobilization of a Metal–Organic Framework on a Nanofiber Membrane as Artificial Platelets for Efficient Hemostasis
Binglin Bie, Zhanglong Zhu, Yonggang Lv
Immobilization of a Metal–Organic Framework on a Nanofiber Membrane as Artificial Platelets for Efficient Hemostasis
Medical hemostatic gauze is one of the most common agents for bleeding management used in pre-hospital care and clinical treatment. An ideal hemostat requires the features including fast coagulation ability, high biocompatibility and low cost, which is difficult to be achieved simultaneously. Herein, we reported a chemical immobilization method to uniformly anchor the zeolitic imidazolate framework (ZIF-8) nanoparticles on polyvinyl alcohol (PVA) membrane, which dramatically accelerated the in vivo conversion process of prothrombin to thrombin, achieving a short hemostasis time around 60 s with a low amount of blood loss of 23 mg. Later, the hemostatic mechanism was unveiled by two pathways involving the activation of platelets and the conversion of prothrombin, indicating that this ZIF-8-based membrane works in a similar way to natural platelet-based physiological processes. More importantly, the convenient manufacturing and excellent biocompatibility of ZIF-8-based membrane provide a practical candidate hemostat for clinical bleeding management.
Noncompressible hemostasis / Immobilization of metal–organic frameworks / Artificial platelets / Nanofiber membrane
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
/
〈 | 〉 |