A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning

Boling Lan, Cheng Zhong, Shenglong Wang, Yong Ao, Yang Liu, Yue Sun, Tao Yang, Guo Tian, Longchao Huang, Jieling Zhang, Weili Deng, Weiqing Yang

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (5) : 1402-1412. DOI: 10.1007/s42765-024-00420-w
Research Article

A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning

Author information +
History +

Abstract

Respiration is a critical physiological process of the body and plays an essential role in maintaining human health. Wearable piezoelectric nanofiber-based respiratory monitoring has attracted much attention due to its self-power, high linearity, noninvasiveness, and convenience. However, the limited sensitivity of conventional piezoelectric nanofibers makes it difficult to meet medical and daily respiratory monitoring requirements due to their low electromechanical conversion efficiency. Here, we present a universally applicable, highly sensitive piezoelectric nanofiber characterized by a coaxial composite structure of polyvinylidene fluoride (PVDF) and carbon nanotube (CNT), which is denoted as PS-CC. Based on elucidating the enhancement mechanism from the percolation effect, PS-CC exhibits excellent sensing performance with a high sensitivity of 3.7 V/N and a fast response time of 20 ms for electromechanical conversion. As a proof-of-concept, the nanofiber membrane is seamlessly integrated into a facial mask, facilitating accurate recognition of respiratory states. With the assistance of a one-dimensional convolutional neural network (CNN), a PS-CC-based smart mask can recognize respiratory tracts and multiple breathing patterns with a classification accuracy of up to 97.8%. Notably, this work provides an effective strategy for monitoring respiratory diseases and offers widespread utility for daily health monitoring and clinical applications.

Keywords

PVDF/CNT / Coaxial nanofiber / High-sensitivity / Smart mask / Machine learning / Respiratory monitoring

Cite this article

Download citation ▾
Boling Lan, Cheng Zhong, Shenglong Wang, Yong Ao, Yang Liu, Yue Sun, Tao Yang, Guo Tian, Longchao Huang, Jieling Zhang, Weili Deng, Weiqing Yang. A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning. Advanced Fiber Materials, 2024, 6(5): 1402‒1412 https://doi.org/10.1007/s42765-024-00420-w

References

[1]
Hu H, Huang H, Li M, Gao X, Yin L, Qi R, Wu RS, Chen X, Ma Y, Shi K, Li C, Maus TM, Huang B, Lu C, Lin M, Zhou S, Lou Z, Gu Y, Chen Y, Lei Y, Wang X, Wang R, Yue W, Yang X, Bian Y, Mu J, Park G, Xiang S, Cai S, Corey PW, Wang J, Xu S. A wearable cardiac ultrasound imager. Nature, 2023, 613: 667,
CrossRef Google scholar
[2]
Qian X, Chen X, Zhu L, Zhang QM. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science, 2023, 380: eadg0902,
CrossRef Google scholar
[3]
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev, 2022, 51: 3317,
CrossRef Google scholar
[4]
Chen G, Li Y, Bick M, Chen J. Smart textiles for electricity generation. Chem. Rev., 2020, 120: 3668,
CrossRef Google scholar
[5]
Yu X, Xie Z, Yu Y, Lee J, Vazquez-Guardado A, Luan H, Ruban J, Ning X, Akhtar A, Li D, Ji B, Liu Y, Sun R, Cao J, Huo Q, Zhong Y, Lee C, Kim S, Gutruf P, Zhang C, Xue Y, Guo Q, Chempakasseril A, Tian P, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y, Rogers J. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575: 473,
CrossRef Google scholar
[6]
Song Y, Tay R, Li J, Xu C, Min J, Sani E, Kim G, Heng W, Kim I, Gao W. 3D-printed epi fluidic electronic skin for machine learning–powered multimodal health surveillance. Sci Adv, 2023, 9: eadi6492,
CrossRef Google scholar
[7]
Xu Y, De la Paz E, Paul A, Mahato K, Sempionatto J, Tostado N, Lee M, Hota G, Lin M, Uppal A, Chen W, Dua S, Yin L, Wuerstle B, Deiss S, Mercier P, Xu S, Wang J, Cauwenberghs G. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat Biomed Eng, 2023, 7: 1307,
CrossRef Google scholar
[8]
Vinikoor T, Dzidotor G, Le T, Liu Y, Kan H, Barui S, Chorsi M, Curry E, Reinhardt E, Wang H, Singh P, Merriman M, D’Orio E, Park J, Xiao S, Chapman J, Lin F, Truong C, Prasadh S, Chuba L, Killoh S, Lee S, Wu Q, Chidambaram R, Lo K, Laurencin C, Nguyen T. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun, 2023, 14: 6257,
CrossRef Google scholar
[9]
Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano, 2018, 12: 6156,
CrossRef Google scholar
[10]
Ye Z, Ling Y, Yang M, Xu Y, Zhu L, Yan Z, Chen P. A breathable, reusable, and zero-power smart face mask for wireless cough and mask-wearing monitoring. ACS Nano, 2022, 16: 5874,
CrossRef Google scholar
[11]
Shin J, Jeong S, Kim J, Choi Y, Choi J, Lee J, Kim S, Kim M, Rho Y, Hong S, Choi J, Grigoropoulos C, Ko S. Dynamic pore modulation of stretchable electrospun nanofiber filter for adaptive machine learned respiratory protection. ACS Nano, 2021, 15: 15730,
CrossRef Google scholar
[12]
Peng Z, Shi J, Xiao X, Hong Y, Li X, Zhang W, Cheng Y, Wang Z, Li W, Chen J, Leung MK, Yang Z. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat Commun, 2022, 13: 7835,
CrossRef Google scholar
[13]
Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater, 2021, 33,
CrossRef Google scholar
[14]
Zhong J, Li Z, Takakuwa M, Inoue D, Hashizume D, Jiang Z, Shi Y, Ou L, Nayeem M, Umezu S, Fukuda K, Someya T. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv Mater, 2022, 34,
CrossRef Google scholar
[15]
Khan Y, Ostfeld A, Lochner C, Pierre A, Arias A. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28: 4373,
CrossRef Google scholar
[16]
Fang Y, Xu J, Xiao X, Zou Y, Zhao X, Zhou Y, Chen J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv Mater, 2022, 34,
CrossRef Google scholar
[17]
Chen S, Qian G, Ghanem B, Wang Y, Shu Z, Zhao X, Yang L, Liao X, Zheng Y. Quantitative and real-time evaluation of human respiration signals with a shape-conformal wireless sensing system. Adv Sci, 2022, 9: 2203460,
CrossRef Google scholar
[18]
Ye L, Wu F, Xu R, Di Z, Lu J, Wang C, Dong A, Xu S, Xue L, Fan Z, Xu L, Li K, Li D, Kursumovic A, Zhao R, Tang R, Qiu L, Wang H, MacManus-Driscoll J, Jing Q, Li W, Yang H. Face mask integrated with flexible and wearable manganite oxide respiration sensor. Nano Energy, 2023, 112,
CrossRef Google scholar
[19]
Corral-Penafiel J, Pepin J, Barbe F. Ambulatory monitoring in the diagnosis and management of obstructive sleep apnoea syndrome. Eur Respir Rev, 2013, 22: 312,
CrossRef Google scholar
[20]
Haick H, Broza Y, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev, 2014, 43: 1423,
CrossRef Google scholar
[21]
Raichle M. Images of the mind: studies with modern imaging techniques. Annu Rev Psychol, 1994, 45: 333,
CrossRef Google scholar
[22]
Luo Y, Abidian MR, Ahn J-H, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi S-J, Chortos A, Dagdeviren C, Dauskardt RH, Di C-A, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim D-H, Kim I-D, Kireev D, Kong L, Lee C, Lee N-E, Lee PS, Lee T-W, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo D-G, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao X-M, Tee BCK, Thean AV-Y, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu S-H, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng Y-Q, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology roadmap for flexible sensors. ACS Nano, 2023, 17: 5211,
CrossRef Google scholar
[23]
Yoon H, Choi J, Kim J, Kim J, Min J, Kim D, Jeong S, Lee JG, Bang J, Choi SH, Jeong Y, Kim CY, Ko SH. Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv Funct Mater, 2024,
CrossRef Google scholar
[24]
Wang Z, Shi N, Zhang Y, Zheng N, Li H, Jiao Y, Cheng J, Wang Y, Zhang X, Chen Y, Chen Y, Wang H, Xie T, Wang Y, Ma Y, Gao X, Feng X. Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces. Nat Commun, 2023, 14: 4213,
CrossRef Google scholar
[25]
Min S, Kim D, Joe D, Kim B, Jung Y, Lee J, Lee B, Doh I, An J, Youn Y, Joung B, Yoo C, Ahn H, Lee K. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater, 2023, 35,
CrossRef Google scholar
[26]
Li J, Carlos C, Zhou H, Sui J, Wang Y, Silva-Pedraza Z, Yang F, Dong Y, Zhang Z, Hacker TA, Liu B, Mao Y, Wang X. Stretchable piezoelectric biocrystal thin films. Nat Commun, 2023, 14: 6562,
CrossRef Google scholar
[27]
Feng T, Ling D, Li C, Zheng W, Zhang S, Li C, Emel’yanov A, Pozdnyakov AS, Lu L, Mao Y. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res, 2023, 17: 4462,
CrossRef Google scholar
[28]
Park H, Park W, Lee CH. Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater, 2021, 13: 22,
CrossRef Google scholar
[29]
Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L, Lu B. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small, 2017, 13: 1604245,
CrossRef Google scholar
[30]
Panahi A, Hassanzadeh A, Moulavi A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sens Bio-Sens Res, 2020, 30,
CrossRef Google scholar
[31]
Le TT, Curry EJ, Vinikoor T, Das R, Liu Y, Sheets D, Tran KTM, Hawxhurst CJ, Stevens JF, Hancock JN, Bilal OR, Shor LM, Nguyen TD. Piezoelectric nanofiber membrane for reusable, stable, and highly functional face mask filter with long-term biodegradability. Adv Funct Mater, 2022, 32: 2113040,
CrossRef Google scholar
[32]
Moshizi S, Abedi A, Sanaeepur M, Pastras C, Han Z, Wu S, Asadnia M. Polymeric piezoresistive airflow sensor to monitor respiratory patterns. J R Soc Interface, 2021, 18: 34875876,
CrossRef Google scholar
[33]
Tian G, Shi Y, Deng J, Yu W, Yang L, Lu Y, Zhao Y, Jin X, Ke Q, Huang C. Low-cost, scalable fabrication of all-fabric piezoresistive sensors via binder-free, in-situ welding of carbon nanotubes on bicomponent nonwovens. Adv Fiber Mater, 2024, 6: 120,
CrossRef Google scholar
[34]
Yang T, Deng W, Chu X, Wang X, Hu Y, Fan X, Song J, Gao Y, Zhang B, Tian G, Xiong D, Zhong S, Tang L, Hu Y, Yang W. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano, 2021, 15: 11555,
CrossRef Google scholar
[35]
Yan Z, Wang L, Xia Y, Qiu R, Liu W, Wu M, Zhu Y, Zhu S, Jia C, Zhu M, Cao R, Li Z, Wang X. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv Funct Mater, 2021, 31: 2100709,
CrossRef Google scholar
[36]
Zhao Z, Yan C, Liu Z, Fu X, Peng LM, Hu Y, Zheng Z. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater, 2016, 28: 10267,
CrossRef Google scholar
[37]
Xi B, Wang L, Yang B, Xia Y, Chen D, Wang X. Boosting output performance of triboelectric nanogenerator based on BaTiO3: La embedded nanofiber membrane for energy harvesting and wireless power transmission. Nano Energy, 2023, 110,
CrossRef Google scholar
[38]
Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci, 2022, 2: 22,
CrossRef Google scholar
[39]
Lan B, Xiao X, Carlo AD, Deng W, Yang T, Jin L, Tian G, Ao Y, Yang W, Chen J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv Funct Mater, 2022, 32: 2207393,
CrossRef Google scholar
[40]
Lan B, Yang T, Tian G, Ao Y, Jin L, Xiong D, Wang S, Zhang H, Deng L, Sun Y, Zhang J, Deng W, Yang W. Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl Mater Interfaces, 2023, 15: 12146,
CrossRef Google scholar
[41]
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano, 2022, 16: 13612,
CrossRef Google scholar
[42]
Fu Y, He H, Zhao T, Dai Y, Han W, Ma J, Xing L, Zhang Y, Xue X. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett, 2018, 10: 76,
CrossRef Google scholar
[43]
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano, 2022, 16: 1361
[44]
Tian G, Deng W, Xiong D, Yang T, Zhang B, Ren X, Lan B, Zhong S, Jin L, Zhang H, Deng L, Yang W. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep Phys Sci, 2022, 3,
CrossRef Google scholar
[45]
Zhang J, Yang T, Tian G, Lan B, Deng W, Tang L, Ao Y, Sun Y, Zeng W, Ren X, Li Z, Jin L, Yang W. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv Fiber Mater, 2024, 6: 133,
CrossRef Google scholar
[46]
Li T, Wei Z, Jin F, Yuan Y, Zheng W, Qian L, Wang H, Hua L, Ma J, Zhang H, Gu H, Irwin MG, Wang T, Wang S, Wang Z, Feng Z-Q. Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation. Nat Commun, 2023, 14: 8386,
CrossRef Google scholar
[47]
Meng N, Ren X, Santagiuliana G, Ventura L, Zhang H, Wu J, Yan H, Reece M, Bilotti E. Ultrahigh beta-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun, 2019, 10: 4535,
CrossRef Google scholar
[48]
Tian G, Deng W, Gao Y, Xiong D, Yan C, He X, Yang T, Jin L, Chu X, Zhang H, Yan W, Yang W. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 2019, 59: 574,
CrossRef Google scholar
[49]
Yang T, Deng W, Tian G, Deng L, Zeng W, Wu Y, Wang S, Zhang J, Lan B, Sun Y, Jin L, Yang W. Modulating piezoelectricity and mechanical strength via three-dimensional gradient structure for piezoelectric composites. Mater Horiz, 2023, 10: 5045,
CrossRef Google scholar
[50]
Mackie P. The classification of viruses infecting the respiratory tract. Paediatr Respir Rev, 2003, 4: 84,
CrossRef Google scholar
[51]
Zhang Q, Liang Q, Zhang Z, Kang Z, Liao Q, Ding Y, Ma M, Gao F, Zhao X, Zhang Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv Funct Mater, 2018, 28: 1703801,
CrossRef Google scholar
[52]
Zhang H, Zhang J, Hu Z, Quan L, Shi L, Chen J, Xuan W, Zhang Z, Dong S, Luo J. Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy, 2019, 59: 75,
CrossRef Google scholar
[53]
Sun J, Xiu K, Wang Z, Hu N, Zhao L, Zhu H, Kong F, Xiao J, Cheng L, Bi X. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy, 2023, 108,
CrossRef Google scholar
[54]
Cheraghi Bidsorkhi H, Faramarzi N, Ali B, Ballam L, D'Aloia A, Tamburrano A, Sarto S. Wearable graphene-based smart face mask for real-time human respiration monitoring. Mater Des, 2023, 230,
CrossRef Google scholar
[55]
Liu J, Wang H, Liu T, Wu Q, Ding Y, Ou R, Guo C, Liu Z, Wang Q. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv Funct Mater, 2022, 32: 2204686,
CrossRef Google scholar
[56]
Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang Z. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano, 2022, 16: 2811,
CrossRef Google scholar
Funding
the Sichuan Science and Technology Program(No. 2023NSFSC0313); the Basic Research Cultivation Project of Southwest Jiaotong University(No. 2682023KJ024)

Accesses

Citations

Detail

Sections
Recommended

/