Electronic Textile with Passive Thermal Management for Outdoor Health Monitoring

He Yu, Shiliang Zhang, Yunlu Lian, Mingxiang Liu, Mingyuan Wang, Jiamin Jiang, Chong Yang, Shengwang Jia, Maoyi Wu, Yulong Liao, Jun Gou, Yadong Jiang, Jun Wang, Guangming Tao

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (4) : 1241-1252. DOI: 10.1007/s42765-024-00412-w
Research Article

Electronic Textile with Passive Thermal Management for Outdoor Health Monitoring

Author information +
History +

Abstract

Soft and wearable electronics for monitoring health in hot outdoor environments are highly desirable due to their effectiveness in safeguarding individuals against escalating heat-related illnesses associated with global climate change. However, traditional wearable devices have limitations when exposed to outdoor solar radiation, including reduced electrical performance, shortened lifespan, and the risk of skin burns. In this work, we introduce a novel approach known as the cooling E-textile (CET), which ensures reliable and accurate tracking of uninterrupted physiological signals in intense external conditions while maintaining the device at a consistently cool temperature. Through a co-designed architecture comprising a spectrally selective passive cooling structure and intricate hierarchical sensing construction, the monolithic integrated CET demonstrates superior sensitivity (6.67 × 103 kPa−1), remarkable stability, and excellent wearable properties, such as flexibility, lightweightness, and thermal comfort, while achieving maximum temperature reduction of 21 °C. In contrast to the limitations faced by existing devices that offer low signal quality during overheating, CET presents accurately stable performance output even in rugged external environments. This work presents an innovative method for effective thermal management in next-generation textile electronics tailored for outdoor applications.

Keywords

Electronic textile / Thermal comfort / Effective thermal management

Cite this article

Download citation ▾
He Yu, Shiliang Zhang, Yunlu Lian, Mingxiang Liu, Mingyuan Wang, Jiamin Jiang, Chong Yang, Shengwang Jia, Maoyi Wu, Yulong Liao, Jun Gou, Yadong Jiang, Jun Wang, Guangming Tao. Electronic Textile with Passive Thermal Management for Outdoor Health Monitoring. Advanced Fiber Materials, 2024, 6(4): 1241‒1252 https://doi.org/10.1007/s42765-024-00412-w

References

[1]
Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 2021, 373: 692,
CrossRef Google scholar
[2]
C. M. Powis, D. Byrne. Z. Zobel, K. N. Gassert, A. C. Lute, C. R. Schwalm. Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming. Sci. Adv. 2023, 9: 9297.
[3]
Li L, Zhang Y, Zhou T, Wang K, Wang C, Wang T, Yuan L, An K, Zhou C, G. Mitigation of China’s carbon neutrality to global warming. Nat Commun, 2022, 13: 5315,
CrossRef Google scholar
[4]
Zhao Q, Guo Y, Ye T, Gasparrini A, Tong S, Overcenco A, Urban A, Schneider A, Entezari A, Vicedo-Cabrera AM, Zanobetti A, Analitis A, Zeka A, Tobias A, Nunes B, Alahmad B, Armstrong B, Forsberg B, Pan SC, Íñiguez C, Ameling C, de la Cruz Valencia C, Åström C, Houthuijs D, Dung DV, Royé D, Indermitte E, Lavigne E, Mayvaneh F, Acquaotta F, F. de’Donato, F. di Ruscio, F. Sera, G. Carrasco-Escobar, H. Kan, H. Orru, H. Kim, I. H. Holobaca, J. Kyselý, J. Madureira, J. Schwartz, J. J. K. Jaakkola, K. Katsouyanni, M. Hurtado Diaz, M. S. Ragettli, M. Hashizume, M. Pascal, M. de Sousa Zanotti Stagliorio Coélho, N. Valdés Ortega, N. Ryti, N. Scovronick, P. Michelozzi, P. Matus Correa, P. Goodman, P. H. Nascimento Saldiva, R. Abrutzky, S. Osorio, S. Rao, S. Fratianni, T. N. Dang, V. Colistro, V. Huber, W. Lee, X. Seposo, Y. Honda, Y. L. Guo, M. L. Bell, S. Li. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from, . to 2019: A three-stage modelling study. Lancet Planet Health, 2000, 2021(5)
[5]
Cai W, Zhang C, Zhang S, Bai Y, Callaghan YQM, Chang N, Chen B, Chen H, Cheng L, Cui X, Dai H, Danna B, Dong W, Fan W, Fang X, Gao T, Geng Y, Guan D, Hu Y, Hua J, Huang C, Huang H, Huang J, Jiang L, Jiang Q, Jiang X, Jin H, Kiesewetter G, Liang L, Lin B, Lin H, Liu H, Liu Q, Liu T, Liu X, Liu X, Liu Z, Liu Z, Lou S, Lu C, Luo Z, Meng W, Miao H, Ren C, Romanello M, Schöpp W, Su J, Tang X, Wang C, Wang Q, Warnecke L, Wen S, Winiwarter W, Xie Y, Xu B, Yan Y, Yang X, Yao F, Yu L, Yuan J, Zeng Y, Zhang J, Zhang L, Zhang LR, Zhang S, Zhang S, Zhao Q, Zheng D, Zhou H, Zhou J, Fung M, Luo Y, Gong P. The 2022 China report of the Lancet Countdown on health and climate change: leveraging climate actions for healthy ageing. Lancet Public Health, 2022, 7: 1073,
CrossRef Google scholar
[6]
Goh J, Pfeffer J, Zenios SA. The Relationship Between Workplace Stressors and Mortality and Health Costs in the United States. Manage Sci, 2016, 62: 608,
CrossRef Google scholar
[7]
Binkley HM, Beckett J, Casa DJ, Kleiner DM, Plummer PE. National athletic trainers’ association position statement: exertional heat illnesses. J Athl Train, 2002, 37: 329
[8]
B. Jacklitsch, J. Williams, K. Musolin, A. Coca, J. H. Kim, N. Turner. Occupational Exposure to Heat and Hot Environments, NIOSH, 2016.
[9]
Gubernot DM, Anderson GB, Hunting KL. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate. Int J Biometeorol, 2014, 58: 1779,
CrossRef Google scholar
[10]
Shakerian S, Habibnezhad M, Ojha A, Lee G, Liu Y, Jebelli H, Lee S. Assessing occupational risk of heat stress at construction: a worker-centric wearable sensor-based approach. Saf Sci, 2021, 142,
CrossRef Google scholar
[11]
Kim H, Yoo YJ, Yun JH, Heo SY, Song YM, Yeo WH. Outdoor worker stress monitoring electronics with nanofabric radiative cooler-based thermal management. Adv Healthcare Mater, 2023, 12: 2301104,
CrossRef Google scholar
[12]
Jung Y, Ha I, Kim M, Ahn J, Lee J, Ko SH. High heat storing and thermally diffusive artificial skin for wearable thermal management. Nano Energy, 2023, 105,
CrossRef Google scholar
[13]
Kim SE, Mujid F, Rai A, Eriksson F, Suh J, Poddar P, Ray A, Park C, Fransson E, Zhong Y, Muller DA, Erhart P, Cahill DG. . J Park Extremely anisotropic van der Waals thermal conductors Nature, 2021, 597: 660
[14]
Kang MH, Lee GJ, Lee JH, Kim MS, Yan Z, Jeong JW, Jang KI, Song YM. Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv Sci, 2021, 8: 2004885,
CrossRef Google scholar
[15]
Zhou J, Zhang X, Xie J, Liu J. Effects of elevated air speed on thermal comfort in hot-humid climate and the extended summer comfort zone. Energ Buildings, 2023, 287,
CrossRef Google scholar
[16]
Li J, Fu Y, Zhou J, Yao K, Ma X, Gao S, Wang Z, Dai JG, Lei D, Ultrathin XYu. soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci Adv, 1837, 2023: 9
[17]
Hsu P-C, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353: 1019,
CrossRef Google scholar
[18]
Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y. Temperature regulation in colored infrared transparent polyethylene textiles. Joule, 2019, 3: 1478,
CrossRef Google scholar
[19]
Abbas A, Zhao Y, Wang X, Lin T. Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J Text Inst, 2013, 104: 798,
CrossRef Google scholar
[20]
Li P, Wang A, Fan J, Kang Q, Jiang P, Bao H, Huang X. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv Funct Mater, 2021, 32: 2109542,
CrossRef Google scholar
[21]
Miao D, Wang X, Yu J, Ding B. A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv Funct Mater, 2021, 31: 2008705-2008714,
CrossRef Google scholar
[22]
Kong M, Guo X, Zhang S, Zhang Y, Tang B. Structural colored textiles with high color visibility and stability for intelligent thermoregulating performance. Chem Eng J, 2023, 473,
CrossRef Google scholar
[23]
Yan Z, Zhai H, Fan D, Li Q. A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today, 2023, 51,
CrossRef Google scholar
[24]
Li X, Dai B, Wang L, Yang X, Xu T, Zhang X. Radiative cooling and anisotropic wettability in E-textile for comfortable biofluid monitoring. Biosens Bioelectron, 2023, 237,
CrossRef Google scholar
[25]
Han WB, Heo SY, Kim D, Yang SM, Ko GJ, Lee GJ, Kim DJ, Rajaram K, Lee JH, Shin JW, Jang TM, Han S, Kang H, Lim JH, Kim DH, Kim SH, Song YM, Hwang SW. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci Adv, 2023, 9: 5883,
CrossRef Google scholar
[26]
Zhong H, Li Y, Zhang P, Gao S, Liu B, Wang Y, Meng T, Zhou Y, Hou H, Xue C, Zhao Y, Wang Z. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano, 2021, 15: 10076,
CrossRef Google scholar
[27]
Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 2018, 362: 315,
CrossRef Google scholar
[28]
Zhu W, Droguet B, Shen Q, Zhang Y, Parton TG, Shan X, Parker RM, De Volder MFL, Deng T, Vignolini S, Li T. Structurally colored radiative cooling cellulosic films. Adv Sci, 2022, 9: 2202061,
CrossRef Google scholar
[29]
Li M, Yan Z, Fan D. Flexible Radiative Cooling Textiles Based on Composite Nanoporous Fibers for Personal Thermal Management. ACS Appl Mater Interfaces, 2023, 15: 17848,
CrossRef Google scholar
[30]
Hsu PC, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu CL, Catrysse PB, Cai L, Zhai S, Majumdar A, Fan S, Cui Y. A dual-mode textile for human body radiative heating and cooling. Sci Adv, 2017, 3: 1700895,
CrossRef Google scholar
[31]
Mouritza AP, Bannisterb MK, Falzonb PJ, Leong KH. Review of applications for advanced three-dimensional fibre textile composites. Composites, 1999, 30: 1445,
CrossRef Google scholar
[32]
Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy, 2020, 70,
CrossRef Google scholar
[33]
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano Micro Lett, 2022, 14: 141,
CrossRef Google scholar
[34]
E.A.e. Eltahan, M. Sultan, A.-B. Mito. Determination of loop length, tightness factor and porosity of single jersey knitted fabric. Alex. Eng. J. 2016, 55, 851.
[35]
G.Y. Bae, S.W. Pak, D. Kim, G. Lee, H. Kim do, Y. Chung, K. Cho. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 2016, 28: 5300.
[36]
Lee S, Franklin S, Hassani FA, Yokota T, Nayeem MOG, Wang Y, Leib R, Cheng G, Franklin DW, Someya T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 2020, 370: 966,
CrossRef Google scholar
[37]
Lv C, Tian C, Jiang J, Dang Y, Liu Y, Duan X, Li Q, Chen X, Xie M. Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv Sci, 2023, 10: 2206807,
CrossRef Google scholar
[38]
Huang CY, Yang G, Huang P, Hu JM, Tang ZH, Li YQ, Fu SY. Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl Mater Interfaces, 2023, 15: 3476,
CrossRef Google scholar
[39]
Min S, Kim DH, Joe DJ, Kim BW, Jung YH, Lee JH, Lee BY, Doh I, An J, Youn YN, Joung B, Yoo CD, Ahn HS, Lee KJ. Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv Mater, 2023, 35: 2301627,
CrossRef Google scholar
[40]
Yue Y, Liu N, Su T, Cheng Y, Liu W, Lei D, Cheng F, Ge B, Gao Y. Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Adv Funct Mater, 2023, 33: 2211613,
CrossRef Google scholar
[41]
Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Black phosphorous-based human-machine communication interface. Nat Commun, 2023, 14: 2,
CrossRef Google scholar
[42]
Wei Y, Shi X, Yao Z, Zhi J, Hu L, Yan R, Shi C, Yu H-D, Huang W. Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. Npj Flex Electron, 2023, 13: 7
[43]
Xu S, Yu JX, Guo H, Tian S, Long Y, Yang J, Zhang L. Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nat Commun, 2023, 14: 219,
CrossRef Google scholar
[44]
Ma X, Kong Z, Gao Y, Bai Y, Wang W, Tan H, Cai X, Cai J. Anisotropic free-standing aerogels based on graphene/silk for pressure sensing and efficient adsorption. ACS Appl Mater Interfaces, 2023, 15: 30630,
CrossRef Google scholar
[45]
Zhuo S, Song C, Rong Q, Zhao T, Liu M. Shape and stiffness memory ionogels with programmable pressure-resistance response. Nat Commun, 2022, 13: 1743,
CrossRef Google scholar
[46]
Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J. Wearable pressure sensors for pulse wave monitoring. Adv Mater, 2022, 34: 2109357,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(No. 62175082); Natural Science Foundation of Sichuan Province(No. 24NSFSC1465); Aeronautical Science Foundation of China(No. 20230024080001); National Key Research and Development Program of China(No. 2022YFB3805800); Multidisciplinary Research Support Program of Huazhong University of Science and Technology(No. 2023JCYJ039)

Accesses

Citations

Detail

Sections
Recommended

/