Electrospun trilayer eccentric Janus nanofibers for a combined treatment of periodontitis

Ping Zhao, Kecong Zhou, Yiru Xia, Cheng Qian, Deng-Guang Yu, Yufeng Xie, Yaozu Liao

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (4) : 1053-1073. DOI: 10.1007/s42765-024-00397-6
Research Article

Electrospun trilayer eccentric Janus nanofibers for a combined treatment of periodontitis

Author information +
History +

Abstract

Oral diseases are common and prevalent, affecting people's health and seriously impairing their quality of life. The implantable class of materials for a safe, convenient, and comprehensive cure of periodontitis is highly desired. This study shows a proof-of-concept demonstration about the implant fibrous membranes. The fibers having a trilayer eccentric side-by-side structure are fabricated using the multiple-fluid electrospinning, and are fine candidates for treating periodontitis. In the trilayer eccentric side-by-side composite nanofibers, the outermost layer contains a hydrophilic polymer and a drug called ketoprofen, which can reach a release of 50% within 0.37 h, providing a rapid pain relief and anti-inflammatory effect. The middle layer is loaded with metronidazole, which is manipulated to be released in a sustained manner. The innermost layer is loaded with nano-hydroxyapatite, which can directly contact with periodontal tissues to achieve the effect of promoting alveolar bone growth. The experimental results indicate that the developed implant films have good wettability, fine mechanical properties, biodegradability, and excellent antibacterial properties. The implant films can reduce inflammatory responses and promote osteoblast formation by down-regulating interleukin 6 and up-regulating osteoprotegerin expression. In addition, their composite nanostructures exhibit the desired promotional effects on fibroblast attachment, infiltration, proliferation, and differentiation. Overall, the developed fibrous implant films show strong potential for use in a combined treatment of periodontitis. The protocols reported here pave a new way to develop multi-chamber based advanced fiber materials for realizing the desired functional performances through a robust process-structure-performance relationship.

Keywords

Trilayer Janus nanofibers / Side-by-side electrospinning / Periodontitis / Combined treatment / Medical implants / Multifunctional

Cite this article

Download citation ▾
Ping Zhao, Kecong Zhou, Yiru Xia, Cheng Qian, Deng-Guang Yu, Yufeng Xie, Yaozu Liao. Electrospun trilayer eccentric Janus nanofibers for a combined treatment of periodontitis. Advanced Fiber Materials, 2024, 6(4): 1053‒1073 https://doi.org/10.1007/s42765-024-00397-6

References

[1]
Pedersen T, Krakenes J, Loes S. Multiple brain abscesses and ventriculitis secondary to chronic periodontitis. Clin Case Rep, 2020, 8: 3612-3613,
CrossRef Google scholar
[2]
Rahimi A, Afshari Z. Periodontitis and cardiovascular disease: a literature review. ARYA Atheroscler, 2021, 17: 1-8
[3]
Sharma N, Durge KJ, Bajaj P, Kale B, Borle A. Periodontitis and diabetes mellitus-a two way relationship. J Res Med Dent Sci, 2011, 10: 194-197
[4]
Newman KL, Kamada N. Pathogenic associations between oral and gastrointestinal diseases. Trends Mol Med, 2022, 28: 1030-1039,
CrossRef Google scholar
[5]
Andrei V, Andrei S, Gal AF, Rus V, Gherman L-M, Boșca BA, Niculae M, Barabas R, Cadar O, Dinte E, Muntean D-M, Peștean CP, Rotar H, Boca A, Chiș A, Tăut M, Candrea S, Ilea A. Immunomodulatory effect of novel electrospun nanofibers loaded with doxycycline as an adjuvant treatment in periodontitis. Pharmaceutics, 2023, 15: 707,
CrossRef Google scholar
[6]
Ray RR. Periodontitis: an oral disease with severe consequences. Appl Biochem Biotechnol, 2023, 195: 17-32,
CrossRef Google scholar
[7]
Xu B, Han YW. Oral bacteria, oral health, and adverse pregnancy outcomes. Periodontol, 2000, 2022(89): 181-189
[8]
Williams RC. Periodontal disease. N Engl J Med, 1990, 322: 373-382,
CrossRef Google scholar
[9]
Petrescu N, Crisan B, Aghiorghiesei O, Sarosi C, Mirica IC, Lucaciu O, Iușan SAL, Dirzu N, Apostu D. Gradual drug release membranes and films used for the treatment of periodontal disease. Membranes, 2022, 12: 895,
CrossRef Google scholar
[10]
Yamazaki M, Yamazaki K, Baba Y, Ito H, Loos BG, Takahashi K. The stages and grades of periodontitis are risk indicators for peri-implant diseases-a long-term retrospective study. J Pers Med, 2022, 12: 1723,
CrossRef Google scholar
[11]
Li J, Qu X, Liu L, Li L, Hua Y, Zhang J, Ishida M, Yoshida N, Tabata A, Sougawa N, Ito E, Mochizuki-Oda N, Harada A, Kawamura T, Matsuura R, Wang Y, Morishima K, Miyagawa S, Sawa Y. Developing thick cardiac tissue with a multilayer fiber sheet for treating myocardial infarction. Adv Fiber Mater, 2023, 5: 1905-1918,
CrossRef Google scholar
[12]
Chen G, Xu S, Zhou Q, Zhang Y, Song Y, Mi J, Liu Y, Hou K, Pan J. Temperature-gated light-guiding hydrogel fiber for thermoregulation during optogenetic neuromodulation. Adv Fiber Mater, 2023, 5: 968-978,
CrossRef Google scholar
[13]
Liu J, Cui T, Xu X, Du Y, Wang L, Chen S, Pang J. Robust alcohol soluble polyurethane/chitosan/silk sericin (APU/CS/SS) nanofiber scaffolds toward artificial skin extracellular matrices via microfluidic blow-spinning. Adv Fiber Mater, 2023, 5: 349-361,
CrossRef Google scholar
[14]
Yu D-G, Zhao P. The key elements for biomolecules to biomaterials and to bioapplications. Biomolecules, 2022, 12: 1234,
CrossRef Google scholar
[15]
Zong D, Zhang X, Yin X, Wang F, Yu J, Zhang S, Ding B. Electrospun fibrous sponges: principle, fabrication, and applications. Adv Fiber Mater, 2022, 4: 1434-1462,
CrossRef Google scholar
[16]
Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater, 2022, 4: 959-986,
CrossRef Google scholar
[17]
Li L, Hao R, Qin J, Song J, Chen X, Rao F, Zhai J, Zhao Y, Zhang L, Xue J. Electrospun fibers control drug delivery for tissue regeneration and cancer therapy. Adv Fiber Mater, 2022, 4: 1375-1413,
CrossRef Google scholar
[18]
Hofer U. Fusobacterium orchestrates oral biofilms. Nat Rev Microbiol, 2022, 20: 576
[19]
Porter JR, Henson A, Popat KC. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials, 2009, 30: 780-788,
CrossRef Google scholar
[20]
Duan H, Chen H, Qi C, Lv F, Wang J, Liu Y, Liu Z, Liu Y. A novel electrospun nanofiber system with PEGylated paclitaxel nanocrystals enhancing the transmucus permeability and in situ retention for an efficient cervicovaginal cancer therapy. Int J Pharm, 2024, 650,
CrossRef Google scholar
[21]
Huang X, Jiang W, Zhou J, Yu DG, Liu H. The applications of ferulic-acid-loaded fibrous films for fruit preservation. Polymers, 2022, 14: 4947,
CrossRef Google scholar
[22]
Li J, Du Q, Wan J, Yu DG, Tan F, Yang X. Improved synergistic anticancer action of quercetin and tamoxifen citrate supported by an electrospun complex nanostructure. Mater Des, 2024, 238,
CrossRef Google scholar
[23]
Yu DG, Zhou J. Electrospun multi-chamber nanostructures for sustainable biobased chemical nanofibers. Next Mater, 2024, 1: 119,
CrossRef Google scholar
[24]
Chen X, Liu Y, Liu P. Electrospun core-sheath nanofibers with a cellulose acetate coating for the synergistic release of zinc ion and drugs. Mol Pharm, 2024, 21: 173-182,
CrossRef Google scholar
[25]
Fu L, Feng Q, Chen Y, Fu J, Zhou X, He C. Nanofibers for the immunoregulation in biomedical applications. Adv Fiber Mater, 2022, 4: 1334-1356,
CrossRef Google scholar
[26]
Deng YK, Zhu MM, Lu T, Fan QW, Ma WJ, Zhang XL, Chen L, Min HH, Xiong RH, Huang CB. Hierarchical fiber with granular-convex structure for highly efficient PM25 capture. Sep Purif Technol, 2023, 304: 122235,
CrossRef Google scholar
[27]
Wang M, Hou J, Yu D-G, Li S, Zhu J, Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd, 2020, 846,
CrossRef Google scholar
[28]
Li D, Yue G, Li S, Liu J, Li H, Gao Y, Liu J, Hou L, Liu X, Cui Z, Wang N, Bai J, Zhao Y. Fabrication and applications of multi-fluidic electrospinning multi-structure hollow and core–shell nanofibers. Engineering, 2022, 13: 116-127,
CrossRef Google scholar
[29]
Yao Z-C, Zhang C, Xing Z, Ahmad Z, Ding Q, Chang M-W. Controlled engineering of multifunctional porous structures using tri-needle co-axial electrohydrodynamic flow and sacrificial media. Chem Eng J, 2022, 429,
CrossRef Google scholar
[30]
Jiao Y, Li X, Chen J, Li C, Liu L, Liu X, Wang F, Chen G, Wang L. Constructing nanoscale topology on the surface of microfibers inhibits fibroblast fibrosis. Adv Fiber Mater, 2022, 4: 1219-1232,
CrossRef Google scholar
[31]
Yang Y, Du Y, Zhang J, Zhang H, Guo B. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv Fiber Mater, 2022, 4: 1027-1057,
CrossRef Google scholar
[32]
Lu H, Zhao Y, Qin S, Zhang Y, Liu J, Zhang J, Feng C, Zhao W. Fluorine substitution tunes the nanofiber chirality of supramolecular hydrogels to promote cell adhesion and proliferation. Adv Fiber Mater, 2023, 5: 377-387,
CrossRef Google scholar
[33]
Xing C, Zhu H, Dou X, Gao L, Baddi S, Zou Y, Zhao C, Peng Y, Fang Y, Feng CL. Infected diabetic wound regeneration using peptide-modified chiral dressing to target revascularization. ACS Nano, 2023, 17: 6275-6291,
CrossRef Google scholar
[34]
Kang S, Hou S, Chen X, Yu DG, Wang L, Li XR, Williams G. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers, 2020, 12: 2421,
CrossRef Google scholar
[35]
Zhou J, Yi T, Zhang Z, Yu D-G, Liu P, Wang L, Zhu Y. Electrospun Janus core (ethyl cellulose//polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv Compos Hybrid Mater, 2023, 6: 189,
CrossRef Google scholar
[36]
Wang Y, Yu DG, Liu Y, Liu YN. Progress of electrospun nanofibrous carriers for modifications to drug release profiles. J Funct Biomater, 2022, 13: 289,
CrossRef Google scholar
[37]
He H, Wu M, Zhu J, Yang Y, Ge R, Yu D-G. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater, 2022, 4: 305-317,
CrossRef Google scholar
[38]
Dos Santos DM, Chagas PAM, Leite IS, Inada NM, de Annunzio SR, Fontana CR, Campana-Filho SP, Correa DS. Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. Int J Biol Macromol, 2020, 142: 521-534,
CrossRef Google scholar
[39]
Mirzaeei S, Moghadam F, Asare-Addo K, Nokhodchi A. Design of a nanofibrous guided tissue regeneration carrier as a potential drug delivery system for tetracycline hydrochloride in the management of periodontitis. J Drug Deliv Sci Technol, 2022, 75,
CrossRef Google scholar
[40]
Lu T, Cao WX, Liang HB, Deng YK, Zhang YY, Zhu MM, Ma WJ, Xiong RH, Huang CB. Blow-spun nanofibrous membrane for simultaneous treatment of emulsified oil/water mixtures, dyes, and bacteria. Langmuir, 2022, 38: 15729-15739,
CrossRef Google scholar
[41]
Zhu J, Ye H, Deng D, Li J, Wu Y. Electrospun metformin-loaded polycaprolactone/chitosan nanofibrous membranes as promoting guided bone regeneration membranes: preparation and characterization of fibers, drug release, and osteogenic activity in vitro. J Biomater Appl, 2020, 34: 1282-1293,
CrossRef Google scholar
[42]
Fraire JC, Shaabani E, Sharifiaghdam M, Rombaut M, Hinnekens C, Hua DW, Ramon J, Raes L, Bolea-Fernandez E, Brans T, Vanhaecke F, Borghgraef P, Huang CB, Sauvage F, Vanhaecke T, De Kock J, Xiong RH, De Smedt S, Braeckmans K. Light triggered nanoscale biolistics for efficient intracellular delivery of functional macromolecules in mammalian cells. Nat Commun, 1996, 2022: 13
[43]
Dos Santos DM, de Annunzio SR, Carmello JC, Pavarina AC, Fontana CR, Correa DS. Combining coaxial electrospinning and 3D printing: design of biodegradable bilayered membranes with dual drug delivery capability for periodontitis treatment. ACS Appl Bio Mater, 2022, 5: 146-159,
CrossRef Google scholar
[44]
Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G, Bonferoni MC, Vályi P, Burián K, Csányi E, Sandri G, Ferrari F. Electrospun scaffolds in periodontal wound healing. Polymers, 2021, 13: 307,
CrossRef Google scholar
[45]
Reise M, Kranz S, Guellmar A, Wyrwa R, Rosenbaum T, Weisser J, Jurke A, Schnabelrauch M, Heyder M, Watts DC, Sigusch BW. Coaxial electrospun nanofibers as drug delivery system for local treatment of periodontitis. Dent Mater, 2023, 39: 132-139,
CrossRef Google scholar
[46]
Ho M-H, Claudia JC, Tai W-C, Huang K-Y, Lai C-H, Chang C-H, Chang Y-C, Wu Y-C, Kuo MY-P, Chang P-C. The treatment response of barrier membrane with amoxicillin-loaded nanofibers in experimental periodontitis. J Periodontol, 2021, 92: 886-895,
CrossRef Google scholar
[47]
Bottino MC, Albuquerque MTP, Azabi A, Münchow EA, Spolnik KJ, Nör JE, Edwards PC. A novel patient-specific three-dimensional drug delivery construct for regenerative endodontics. J Biomed Mater Res B Appl Biomater, 2019, 107: 1576-1586,
CrossRef Google scholar
[48]
Ma Y, Song J, Almassri HNS, Zhang D, Zhang T, Cheng Y, Wu X. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis. Drug Deliv, 2020, 27: 151-160,
CrossRef Google scholar
[49]
Batool F, Morand D-N, Thomas L, Bugueno IM, Aragon J, Irusta S, Keller L, Benkirane-Jessel N, Tenenbaum H, Huck O. Synthesis of a novel electrospun polycaprolactone scaffold functionalized with ibuprofen for periodontal regeneration: an in vitro and in vivo study. Materials, 2018, 11: 580,
CrossRef Google scholar
[50]
Xiong RH, Sauvage F, Fraire JC, Huang CB, De Smedt SC, Braeckmans K. Photothermal nanomaterial-mediated photoporation. Acc Chem Res, 2023, 56: 631-643,
CrossRef Google scholar
[51]
Nasajpour A, Ansari S, Rinoldi C, Rad AS, Aghaloo T, Shin SR, Mishra YK, Adelung R, Swieszkowski W, Annabi N, Khademhosseini A, Moshaverinia A, Tamayol A. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv Funct Mater, 2018, 28: 1703437,
CrossRef Google scholar
[52]
Andrei V, Fiț NI, Matei I, Barabás R, Bizo LA, Cadar O, Boșca BA, Farkas N-I, Marincaș L, Muntean D-M, Dinte E, Ilea A. In vitro antimicrobial effect of novel electrospun polylactic acid/hydroxyapatite nanofibres loaded with doxycycline. Materials, 2022, 15: 6225,
CrossRef Google scholar
[53]
Liu Z-Q, Shang L-L, Ge S-H. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling. J Dent Sci, 2021, 16: 937-947,
CrossRef Google scholar
[54]
Zhao K, Lu Z-H, Zhao P, Kang S-X, Yang Y-Y, Yu D-G. Modified tri–axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chem Eng J, 2021, 425,
CrossRef Google scholar
[55]
Xiong RH, Hua DW, Van Hoeck J, Berdecka D, Léger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck K, Huang CB, De Smedt SC, Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol, 2021, 16: 1281-1291,
CrossRef Google scholar
[56]
Alehosseini M, Golafshan N, Kharaziha M. Design and characterization of poly-ε-caprolactone electrospun fibers incorporated with α-TCP nanopowder as a potential guided bone regeneration membrane. Mater Today: Proc, 2018, 5: 15783-15789
[57]
Xu X, Zhou Y, Zheng K, Li X, Li L, Xu Y. 3D polycaprolactone/gelatin-oriented electrospun scaffolds promote periodontal regeneration. ACS Appl Mater Interf, 2022, 14: 46145-46160,
CrossRef Google scholar
[58]
Chen S, Zhou J, Fang B, Ying Y, Yu DG, He H. Three EHDA processes from a detachable spinneret for fabricating drug fast dissolution composites. Macromol. Mater. Eng. 2023, 202300361.
[59]
Wang Y, Liu L, Zhu Y, Wang L, Yu DG, Liu L. Tri-layer core–shell fibers from coaxial electrospinning for a modified release of metronidazole. Pharmaceutics, 2023, 15: 2561,
CrossRef Google scholar
[60]
Zhou J, Dai Y, Fu J, Yan C, Yu DG, Yi T. Dual-step controlled release of berberine hydrochloride from the trans-scale hybrids of nanofibers and microparticles. Biomolecules, 2023, 13: 1011,
CrossRef Google scholar
[61]
Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv, 1985, 60: 110-111
[62]
Deepak A, Goyal AK, Rath G. Development and characterization of novel medicated nanofiber for the treatment of periodontitis. AAPS PharmSciTech, 2018, 19: 3687-3697,
CrossRef Google scholar
[63]
Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol, 2000, 2014(64): 57-80
[64]
Di Cristo F, Valentino A, De Luca I, Peluso G, Bonadies I, Calarco A, Di Salle A. PLA nanofibers for microenvironmental-responsive quercetin release in local periodontal treatment. Molecules, 2022, 27: 2205,
CrossRef Google scholar
Funding
Shanghai Industrial Collaboration Project(HCXBCY-2023-042)

Accesses

Citations

Detail

Sections
Recommended

/