Versatile and Comfortable Janus Fabrics for Switchable Personal Thermal Management and Electromagnetic Interference Shielding

Mingxin Feng, Shuangjiang Feng, Tianrui Yu, Shengyin Zhu, Haoran Cai, Xu He, Yanmei Liu, Man He, Xiaohai Bu, Jun Huang, Yuming Zhou

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (3) : 911-924. DOI: 10.1007/s42765-024-00393-w
Research Article

Versatile and Comfortable Janus Fabrics for Switchable Personal Thermal Management and Electromagnetic Interference Shielding

Author information +
History +

Abstract

Existing personal thermal regulating fabrics fall short of meeting the demands for sustainable and protective outdoor temperature management. Here, a versatile and comfortable Janus fabric has been developed by embedding boron nitride nanosheets within a porous polyurethane matrix (BNNS@TPU) and introducing Ti3C2Tx MXene into another layer of TPU pores (MXene/TPU). The well-distributed BNNS in porous TPU matrix enhances refractive index difference, increases porosity and optimizes pore size distribution, resulting in an excellent solar reflectivity (R = 94.22%), while the distinct distribution of MXene in porous TPU effectively improves solar absorptivity (α = 93.57%) and enhances the conduction loss of electromagnetic waves due to multiple scattering and reflection effects. With a simple flip, Janus fabric can switch between sub-ambient cooling of ~ 7.2 °C and super-ambient heating of ~ 46.0 °C to adapt to changing weather and seasonal conditions. The fabric achieves an electromagnetic interference shielding efficiency of 36 dB, protecting the human body from electromagnetic radiation, attributed to the hierarchical distribution of highly conductive MXene. Furthermore, Janus fabric offers excellent comfort, abrasion resistance, washability, and flame retardancy for practical wear. This study presents an effective strategy for developing personal thermal regulating fabrics with adaptability to environmental changes and resistance to electromagnetic radiation.

Keywords

Radiative cooling / Solar heating / Personal thermal management / Electromagnetic interference shielding / Wearability

Cite this article

Download citation ▾
Mingxin Feng, Shuangjiang Feng, Tianrui Yu, Shengyin Zhu, Haoran Cai, Xu He, Yanmei Liu, Man He, Xiaohai Bu, Jun Huang, Yuming Zhou. Versatile and Comfortable Janus Fabrics for Switchable Personal Thermal Management and Electromagnetic Interference Shielding. Advanced Fiber Materials, 2024, 6(3): 911‒924 https://doi.org/10.1007/s42765-024-00393-w

References

[1]
Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X. Emerging materials and strategies for personal thermal management. Adv Energy Mater, 2020, 10: 1903921,
CrossRef Google scholar
[2]
Li L, Liu WD, Liu Q, Chen ZG. Multifunctional wearable thermoelectrics for personal thermal management. Adv Funct Mater, 2022, 32: 2200548,
CrossRef Google scholar
[3]
Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule, 2020, 4: 724,
CrossRef Google scholar
[4]
Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett., 2023, 15: 160,
CrossRef Google scholar
[5]
Guan M, Wang G, Li J, Rossi RM, Zhu M. Human body-interfacing material strategies for personal thermal and moisture management of wearable systems. Prog Mater Sci, 2023, 139,
CrossRef Google scholar
[6]
Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L. Three-dimensional printed thermal regulation textiles. ACS Nano, 2017, 11: 11513,
CrossRef Google scholar
[7]
Chien H-C, Peng W-T, Chiu T-H, Wu P-H, Liu Y-J, Tu C-W, Wang C-L, Lu M-C. Heat transfer of semicrystalline nylon nanofibers. ACS Nano, 2020, 14: 2939,
CrossRef Google scholar
[8]
Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T. Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv Fiber Mater, 2022, 4: 1118,
CrossRef Google scholar
[9]
Yang Z, Chen T, Tang X, Xu F, Zhang J. Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv Fiber Mater, 2023, 5: 1367,
CrossRef Google scholar
[10]
Wu X, Li J, Jiang Q, Zhang W, Wang B, Li R, Zhao S, Wang F, Huang Y, Lyu P, Zhao Y, Zhu J, Zhang R. An all-weather radiative human body cooling textile. Nat Sustainability, 2023, 6: 1446,
CrossRef Google scholar
[11]
Zhu B, Li W, Zhang Q, Li D, Liu X, Wang Y, Xu N, Wu Z, Li J, Li X, Catrysse PB, Xu W, Fan S, Zhu J. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol, 2021, 16: 1342,
CrossRef Google scholar
[12]
Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L. Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv Fiber Mater, 2019, 1: 61,
CrossRef Google scholar
[13]
Fei L, Yu W, Tan J, Yin Y, Wang C. High solar energy absorption and human body radiation reflection janus textile for personal thermal management. Adv Fiber Mater, 2023, 5: 955,
CrossRef Google scholar
[14]
Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 2021, 373: 692,
CrossRef Google scholar
[15]
Wu J, Zhang M, Su M, Zhang Y, Liang J, Zeng S, Chen B, Cui L, Hou C, Tao G. Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv Fiber Mater, 2022, 4: 1545,
CrossRef Google scholar
[16]
Miao D, Cheng N, Wang X, Yu J, Ding B. Integration of janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett, 2022, 22: 680,
CrossRef Google scholar
[17]
Xiang B, Zhang R, Zeng X, Luo Y, Luo Z. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv Fiber Mater, 2022, 4: 1058,
CrossRef Google scholar
[18]
Xu D, Ouyang Z, Dong Y, Yu H-Y, Zheng S, Li S, Tam KC. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv Fiber Mater, 2022, 5: 282,
CrossRef Google scholar
[19]
Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3c2tx mxene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15: 11396,
CrossRef Google scholar
[20]
Wang W, Zou Q, Wang N, Hong B, Zhang W, Wang GP. Janus multilayer for radiative cooling and heating in double-side photonic thermal system. ACS Appl Mater Interfaces, 2021, 13: 42813,
CrossRef Google scholar
[21]
Dai B, Li X, Xu T, Zhang X. Radiative cooling and solar heating janus films for personal thermal management. ACS Appl Mater Interfaces, 2022, 14: 18877,
CrossRef Google scholar
[22]
Qiao H, Huang Z, Wu J, Shen J, Zhang H, Wang Q, Shang W, Tang W, Deng T, Xu H, Cui K. Scalable and durable janus thermal cloak for all-season passive thermal regulation. Device, 2023, 1: 10008,
CrossRef Google scholar
[23]
Jung Y, Jeong S, Ahn J, Lee J, Ko SH. High efficiency breathable thermoelectric skin using multimode radiative cooling/solar heating assisted large thermal gradient. Small, 2023, 20: 2304338,
CrossRef Google scholar
[24]
Nan Z, Wei W, Lin Z, Chang J, Hao Y. Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett., 2023, 15: 172,
CrossRef Google scholar
[25]
Liu J, Yu M-Y, Yu Z-Z, Nicolosi V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater Today, 2023, 66: 245,
CrossRef Google scholar
[26]
Yun T, Kim H, Iqbal A, Cho YS, Lee GS, Kim MK, Kim SJ, Kim D, Gogotsi Y, Kim SO, Koo CM. Electromagnetic shielding of monolayer mxene assemblies. Adv Mater, 2020, 32: 1906769,
CrossRef Google scholar
[27]
Han M, Shuck CE, Rakhmanov R, Parchment D, Anasori B, Koo CM, Friedman G, Gogotsi Y. Beyond ti3c2tx: Mxenes for electromagnetic interference shielding. ACS Nano, 2020, 14: 5008,
CrossRef Google scholar
[28]
Yan B, Bao X, Gao Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. Antioxidative mxene@ga-decorated textile assisted by metal ion for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Adv Fiber Mater, 2023, 5: 2080,
CrossRef Google scholar
[29]
Lee J-H, Kim Y-S, Ru H-J, Lee S-Y, Park S-J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett., 2022, 14: 188,
CrossRef Google scholar
[30]
Peng J, Cheng H, Liu J, Han W, Wu T, Yin Y, Wang C. Superhydrophobic mxene-based fabric with electromagnetic interference shielding and thermal management ability for flexible sensors. Adv Fiber Mater, 2023, 5: 2099,
CrossRef Google scholar
[31]
Xie J, Zhang Y, Dai J, Xie Z, Xue J, Dai K, Zhang F, Liu D, Cheng J, Kang F, Li B, Zhao Y, Lin L, Zheng Q. Multifunctional mose2@mxene heterostructure-decorated cellulose fabric for wearable thermal therapy. Small, 2022, 19: 2205853,
CrossRef Google scholar
[32]
Wang PL, Mai T, Zhang W, Qi MY, Chen L, Liu Q, Ma MG. Robust and multifunctional ti3c2tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small, 2023,
CrossRef Google scholar
[33]
Wang QW, Zhang HB, Liu J, Zhao S, Xie X, Liu L, Yang R, Koratkar N, Yu ZZ. Multifunctional and water-resistant mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater, 2018, 29: 1806819,
CrossRef Google scholar
[34]
Ye L, Liu L-X, Yin G, Liu Y, Deng Z, Qi C-Z, Zhang H-B, Yu Z-Z. Highly conductive, hydrophobic, and acid/alkali-resistant mxene@pvdf hollow core-shell fibers for efficient electromagnetic interference shielding and joule heating. Mater Today Phys, 2023, 35,
CrossRef Google scholar
[35]
Uzun S, Han M, Strobel CJ, Hantanasirisakul K, Goad A, Dion G, Gogotsi Y. Highly conductive and scalable ti3c2t -coated fabrics for efficient electromagnetic interference shielding. Carbon, 2021, 174: 382,
CrossRef Google scholar
[36]
Yin G, Wang Y, Wang W, Qu Z, Yu D. A flexible electromagnetic interference shielding fabric prepared by construction of pani/mxene conductive network via layer-by-layer assembly. Adv Mater Interfaces, 2021, 8: 2001893,
CrossRef Google scholar
[37]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (ti3c2tx mxene). Chem Mater, 2017, 29: 7633,
CrossRef Google scholar
[38]
Yao P, Chen Z, Liu T, Liao X, Yang Z, Li J, Jiang Y, Xu N, Li W, Zhu B, Zhu J. Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv Mater, 2022, 34: 2208236,
CrossRef Google scholar
[39]
Song J, Shen Q, Shao H, Deng X. Anti-environmental aging passive daytime radiative cooling. Adv Sci, 2023,
CrossRef Google scholar
[40]
Lee M, Kim G, Jung Y, Pyun KR, Lee J, Kim BW, Ko SH. Photonic structures in radiative cooling. Light Sci Appl, 2023, 12: 134,
CrossRef Google scholar
[41]
Lee J, Jung Y, Lee M, Hwang JS, Guo J, Shin W, Min J, Pyun KR, Lee H, Lee Y, Shiomi J, Kim Y-J, Kim B-W, Ko SH. Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz, 2022, 7: 1054,
CrossRef Google scholar
[42]
Wang X, Lei Z, Ma X, He G, Xu T, Tan J, Wang L, Zhang X, Qu L, Zhang X. A lightweight mxene-coated nonwoven fabric with excellent flame retardancy, emi shielding, and electrothermal/photothermal conversion for wearable heater. Chem Eng J., 2022, 430,
CrossRef Google scholar
[43]
Duan Q, Lu Y. Silk sericin as a green adhesive to fabricate a textile strain sensor with excellent electromagnetic shielding performance. ACS Appl Mater Interfaces, 2021, 13: 28832,
CrossRef Google scholar
[44]
Yi P, Zou H, Yu Y, Li X, Li Z, Deng G, Chen C, Fang M, He J, Sun X, Liu X, Shui J, Yu R. Mxene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano, 2022, 16: 14490,
CrossRef Google scholar
[45]
Zhang Y, Tian W, Liu L, Cheng W, Wang W, Liew KM, Wang B, Hu Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem Eng J, 2019, 372: 1077,
CrossRef Google scholar
[46]
Zheng X, Wang P, Zhang X, Hu Q, Wang Z, Nie W, Zou L, Li C, Han X. Breathable, durable and bark-shaped mxene/textiles for high-performance wearable pressure sensors, emi shielding and heat physiotherapy. Compos A, 2022, 152,
CrossRef Google scholar
[47]
Yin G, Wang Y, Wang W, Yu D. Multilayer structured pani/mxene/cf fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Colloids Surf, A, 2020, 601,
CrossRef Google scholar
[48]
Yan B, Huang S, Ren Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. Hrp-catalyzed grafting of mxene@pga to silk fibers for visualization of dual-driven heating smart textile. Int J Biol Macromol, 2023, 226: 1141,
CrossRef Google scholar
[49]
Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. Mxene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl Mater Interfaces, 2021, 13: 60478,
CrossRef Google scholar
[50]
Liu Y, Zhao N, Xu J. Mechanically strong and flame-retardant pbo/bn/mxene nanocomposite paper with low thermal expansion coefficient, for efficient emi shielding and heat dissipation. Adv Fiber Mater, 2023, 5: 1657,
CrossRef Google scholar
[51]
Luo Z, Li B-X, Sun H, Liu J, Zhao H-Y, Yu Z-Z, Yang D. Dual-functional reduced graphene oxide decorated nanoporous polytetrafluoroethylene metafabrics for radiative cooling and solar-heating. J Mater Chem A, 2023, 11: 16595,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(32171725); Outstanding Youth Foundation of Jiangsu Province(BK20200107); Industrial prospect and key technology competition projects in Jiangsu Province(BE2021081); Jiangsu Postdoctoral Research Foundation(SJCX22_0056)

Accesses

Citations

Detail

Sections
Recommended

/