Efficient and Homogenous Precipitation of Sulfur Within a 3D Electrospun Heterocatalytic Rutile/Anatase TiO2-x Framework in Lithium–Sulfur Batteries

Ping Feng, Kang Dong, Yaolin Xu, Xia Zhang, Haojun Jia, Henrik Prell, Michael Tovar, Ingo Manke, Fuyao Liu, Hengxue Xiang, Meifang Zhu, Yan Lu

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (3) : 810-824. DOI: 10.1007/s42765-024-00380-1
Research Article

Efficient and Homogenous Precipitation of Sulfur Within a 3D Electrospun Heterocatalytic Rutile/Anatase TiO2-x Framework in Lithium–Sulfur Batteries

Author information +
History +

Abstract

Lithium–sulfur (Li–S) batteries can potentially outperform state-of-the-art lithium-ion batteries, but their further development is hindered by challenges, such as poor electrical conductivity of sulfur and lithium sulfide, shuttle phenomena of lithium polysulfides, and uneven distribution of solid reaction products. Herein, free-standing carbon nanofibers embedded with oxygen-deficient titanium dioxide nanoparticles (TiO2-x/CNFs) has been fabricated by a facile electrospinning method, which can support active electrode materials without the need for conductive carbon and binders. By carefully controlling the calcination temperature, a mixed phase of rutile and anatase was achieved in the TiO2-x nanoparticles. The hybridization of anatase/rutile TiO2-x and the oxygen vacancy in TiO2-x play a crucial role in enhancing the conversion kinetics of lithium polysulfides (LiPSs), mitigating the shuttle effect of LiPSs, and enhancing the overall efficiency of the Li–S battery system. Additionally, the free-standing TiO2-x/CNFs facilitate uniform deposition of reaction products during cycling, as confirmed by synchrotron X-ray imaging. As a result of these advantageous features, the TiO2-x/CNFs-based cathode demonstrates an initial specific discharge capacity of 787.4 mAh g−1 at 0.5 C in the Li–S coin cells, and a final specific discharge capacity of 584.0 mAh g−1 after 300 cycles. Furthermore, soft-packaged Li–S pouch cells were constructed using the TiO2-x/CNFs-based cathode, exhibiting excellent mechanical properties at different bending states. This study presents an innovative approach to developing free-standing sulfur host materials that are well suited for flexible Li–S batteries as well as for various other energy applications.

Keywords

Li–S batteries / TiO2-x / Electrospinning / Heterocatalyst / X-ray tomography

Cite this article

Download citation ▾
Ping Feng, Kang Dong, Yaolin Xu, Xia Zhang, Haojun Jia, Henrik Prell, Michael Tovar, Ingo Manke, Fuyao Liu, Hengxue Xiang, Meifang Zhu, Yan Lu. Efficient and Homogenous Precipitation of Sulfur Within a 3D Electrospun Heterocatalytic Rutile/Anatase TiO2-x Framework in Lithium–Sulfur Batteries. Advanced Fiber Materials, 2024, 6(3): 810‒824 https://doi.org/10.1007/s42765-024-00380-1

References

[1]
Bruce Dunn HK. Jean-Marie tarascon, electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928-935,
CrossRef Google scholar
[2]
Qi Y, Li Q-J, Wu Y, Bao S-J, Li C, Chen Y, Wang G, Xu M. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat Commun, 2021,
CrossRef Google scholar
[3]
Zhu X, Zhang Y, Man Z, Lu W, Chen W, Xu J, Bao N, Chen W, Wu G. Microfluidic-assembled covalent organic Frameworks@Ti3C2Tx MXene vertical fibers for high-performance electrochemical supercapacitors. Adv Mater, 2023,
CrossRef Google scholar
[4]
Cheng Z, Xiao Z, Pan H, Wang S, Wang R. Elastic sandwich-type rGO–VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium–sulfur batteries with high energy density. Adv Energy Mater, 2017,
CrossRef Google scholar
[5]
Liu Y, Zhao M, Hou LP, Li Z, Bi CX, Chen ZX, Cheng Q, Zhang XQ, Li BQ, Kaskel S, Huang JQ. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries with encapsulating lithium polysulfide electrolyte. Angewandte Chemie Int Ed, 2023,
CrossRef Google scholar
[6]
Liao Y, Yuan L, Liu X, Meng J, Zhang W, Li Z, Huang Y. Low-cost fumed silicon dioxide uniform Li+ flux for lean-electrolyte and anode-free Li/S battery. Energy Storage Mater, 2022, 48: 366-374,
CrossRef Google scholar
[7]
Danuta H, Juliusz U, US Patent No. 3,043,896. Washington, DC: U.S. Patent and Trademark Office. 1962.
[8]
Wang P, Xi B, Zhang Z, Huang M, Feng J, Xiong S. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium–sulfur batteries. Angew Chem Int Ed, 2021, 60(28): 15563-15571,
CrossRef Google scholar
[9]
Zhang C, Du R, Biendicho JJ, Yi M, Xiao K, Yang D, Zhang T, Wang X, Arbiol J, Llorca J, Zhou Y, Morante JR, Cabot A. Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium−sulfur batteries. Adv Energy Mater, 2021, 11(24): 2100432,
CrossRef Google scholar
[10]
Zhao C, Xu GL, Yu Z, Zhang L, Hwang I, Mo YX, Ren Y, Cheng L, Sun CJ, Ren Y, Zuo X, Li JT, Sun SG, Amine K, Zhao T. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat Nanotechnol, 2021, 16(2): 166-173,
CrossRef Google scholar
[11]
Kim JT, Hao X, Wang C, Sun X. Cathode materials for single-phase solid-solid conversion Li-S batteries. Matter, 2023, 6(2): 316-343,
CrossRef Google scholar
[12]
Cai D, Liu B, Zhu D, Chen D, Lu M, Cao J, Wang Y, Huang W, Shao Y, Tu H, Han W. Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium sulfur batteries. Adv Energy Mater, 2020, 10(19): 1904273,
CrossRef Google scholar
[13]
Ye Z, Jiang Y, Li L, Wu F, Chen R. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv Mater, 2021, 33(33),
CrossRef Google scholar
[14]
Xie Y, Cao J, Wang X, Li W, Deng L, Ma S, Zhang H, Guan C, Huang W. MOF-derived bifunctional Co0.85Se nanoparticles embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Lett, 2021, 21(20): 8579-8586,
CrossRef Google scholar
[15]
Raza H, Bai S, Cheng J, Majumder S, Zhu H, Liu Q, Zheng G, Li X, Chen G. Li-S batteries: challenges, achievements and opportunities. Electrochem Energy Rev, 2023,
CrossRef Google scholar
[16]
Ilango PR, Savariraj AD, Huang H, Li L, Hu G, Wang H, Hou X, Kim BC, Ramakrishna S, Peng S. Electrospun flexible nanofibres for batteries: design and application. Electrochem Energy Rev, 2023,
CrossRef Google scholar
[17]
Chung SH, Chang CH, Manthiram A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv Funct Mater, 2018, 28(28): 1801188,
CrossRef Google scholar
[18]
Feng T, Zhao T, Zhang N, Duan Y, Li L, Wu F, Chen R. 2D Amorphous Mo-Doped CoB for bidirectional sulfur catalysis in lithium sulfur batteries. Adv Func Mater, 2022, 32(30): 2202766,
CrossRef Google scholar
[19]
Gueon D, Ju MY, Moon JH. Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li-S batteries. Proc Natl Acad Sci USA, 2020, 117(23): 12686-12692,
CrossRef Google scholar
[20]
Xie D, Mei S, Xu Y, Quan T, Hark E, Kochovski Z, Lu Y. Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium–sulfur batteries. Chemsuschem, 2021, 14(5): 1404-1413,
CrossRef Google scholar
[21]
Deng R, Ke B, Xie Y, Cheng S, Zhang C, Zhang H, Lu B, Wang X. All-solid-state thin-film lithium–sulfur batteries. Nano-Micro Lett, 2023,
CrossRef Google scholar
[22]
Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev, 2013, 42(7): 3018-3032,
CrossRef Google scholar
[23]
Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF. Interwoven MXene Nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater, 2017,
CrossRef Google scholar
[24]
Xiao K, Wang J, Chen Z, Qian Y, Liu Z, Zhang L, Chen X, Liu J, Fan X, Shen ZX. Improving polysulfides adsorption and redox kinetics by the Co(4) N nanoparticle/N-doped carbon composites for lithium–sulfur batteries. Small, 2019, 15(25),
CrossRef Google scholar
[25]
Ao J, Xie Y, Lai Y, Yang M, Xu J, Wu F, Cheng S, Wang X. CoSe2 nanoparticles-decorated carbon nanofibers as a hierarchical self-supported sulfur host for high-energy lithium–sulfur batteries. Sci China Mater, 2023, 66(8): 3075-3083,
CrossRef Google scholar
[26]
Zielke L, Barchasz C, Walus S, Alloin F, Lepretre JC, Spettl A, Schmidt V, Hilger A, Manke I, Banhart J, Zengerle R, Thiele S. Degradation of Li/S battery electrodes on 3D current collectors studied using X-ray phase contrast tomography. Sci Rep, 2015, 5: 10921,
CrossRef Google scholar
[27]
Yermukhambetova A, Tan C, Daemi SR, Bakenov Z, Darr JA, Brett DJ, Shearing PR. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography. Sci Rep, 2016, 6: 35291,
CrossRef Google scholar
[28]
Yang D, Liang Z, Tang P, Zhang C, Tang M, Li Q, Biendicho JJ, Li J, Heggen M, Dunin-Borkowski RE, Xu M, Llorca J, Arbiol J, Morante JR, Chou SL, Cabot A. A high conductivity 1D pi-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv Mater, 2022,
CrossRef Google scholar
[29]
Mei S, Jafta CJ, Lauermann I, Ran Q, Kärgell M, Ballauff M, Lu Y. Porous Ti4O7Particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithium–sulfur batteries. Adv Funct Mater, 2017, 27(26): 1701176,
CrossRef Google scholar
[30]
Mei S, Siebert A, Xu Y, Quan T, Garcia-Diez R, Bär M, Härtel P, Abendroth T, Dörfler S, Kaskel S, Lu Y. Large-scale synthesis of nanostructured carbon-Ti4O7 hollow particles as efficient sulfur host materials for multilayer lithium–sulfur pouch cells. Batter Supercaps, 2022,
CrossRef Google scholar
[31]
Xie D, Xu Y, Wang Y, Pan X, Härk E, Kochovski Z, Eljarrat A, Müller J, Koch CT, Yuan J, Lu Y. Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li–S batteries. ACS Nano, 2022, 16(7): 10554-10565,
CrossRef Google scholar
[32]
Zhang Y, Wang Y, Luo R, Yang Y, Lu Y, Guo Y, Liu X, Cao S, Kim JK, Luo Y. A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries. Nanoscale Horiz, 2020, 5(3): 530-540,
CrossRef Google scholar
[33]
Guo Y, Li J, Pitcheri R, Zhu J, Wen P, Qiu Y. Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium–sulfur batteries with ultra long cycle life and high-rate capability. Chem Eng J, 2019, 355: 390-398,
CrossRef Google scholar
[34]
Jiao L, Zhang C, Geng C, Wu S, Li H, Lv W, Tao Y, Chen Z, Zhou G, Li J, Ling G, Wan Y, Yang QH. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv Energy Mater, 2019, 9(19): 1900219,
CrossRef Google scholar
[35]
Chen Z, Hu Y, Liu W, Yu F, Yu X, Mei T, Yu L, Wang X. Three-dimensional engineering of sulfur/MnO2 composites for high-rate lithium–sulfur batteries. ACS Appl Mater Interfaces, 2021, 13(32): 38394-38404,
CrossRef Google scholar
[36]
Chung S-H, Luo L, Manthiram A. TiS2–polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium–sulfur batteries. ACS Energy Lett, 2018, 3(3): 568-573,
CrossRef Google scholar
[37]
Lang X, Zhao Y, Cai K, Li L, Chen D, Zhang Q. A facile synthesis of stable TiO2/TiC composite material as sulfur immobilizers for cathodes of lithium–sulfur batteries with excellent electrochemical performances. Energ Technol, 2019, 7(12): 1900543,
CrossRef Google scholar
[38]
Ni J, Jin L, Xue M, Zheng J, Zheng JP, Zhang C. TiO2 microboxes as effective polysufide reservoirs for lithium sulfur batteries. Electrochim Acta, 2019, 296: 39-48,
CrossRef Google scholar
[39]
Yin Z, Zhang X, Cai Y, Chen J, Wong JI, Tay YY, Chai J, Wu J, Zeng Z, Zheng B, Yang HY, Zhang H. Preparation of MoS2–MoO3 hybrid nanomaterials for light-emitting diodes. Angew Chem Int Ed, 2014, 53(46): 12560-12565,
CrossRef Google scholar
[40]
Gao P, Chen Z, Gong Y, Zhang R, Liu H, Tang P, Chen X, Passerini S, Liu J. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater, 2020,
CrossRef Google scholar
[41]
Zhang Y, Ding Z, Foster CW, Banks CE, Qiu X, Ji X. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater, 2017, 27(27): 1700856,
CrossRef Google scholar
[42]
Wang H, Zhang J, Hang X, Zhang X, Xie J, Pan B, Xie Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew Chem Int Ed, 2014, 54(4): 1195-1199,
CrossRef Google scholar
[43]
Hao Z, Chen Q, Dai W, Ren Y, Zhou Y, Yang J, Xie S, Shen Y, Wu J, Chen W, Xu GQ. Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage. Adv Energy Mater, 2020, 10(10): 1903107,
CrossRef Google scholar
[44]
Liang Z, Zheng G, Li W, Seh ZW, Yao H, Yan K, Cui Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano, 2014, 8: 5249,
CrossRef Google scholar
[45]
Wang HC, Fan CY, Zheng YP, Zhang XH, Li WH, Liu SY, Sun HZ, Zhang JP, Sun LN, Wu XL. Oxygen-deficient titanium dioxide nanosheets as more effective polysulfide reservoirs for lithium–sulfur batteries. Chemistry, 2017, 23(40): 9666-9673,
CrossRef Google scholar
[46]
Wang H-E, Yin K, Qin N, Zhao X, Xia F-J, Hu Z-Y, Guo G, Cao G, Zhang W. Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J Mater Chem A, 2019, 7(17): 10346-10353,
CrossRef Google scholar
[47]
Yao S, Zhang C, Xie F, Xue S, Gao K, Guo R, Shen X, Li T, Qin S. Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofibers as binder-free electrodes with ultrahigh sulfur loading for lithium sulfur batteries. ACS Sustain Chem Eng, 2020, 8(7): 2707-2715,
CrossRef Google scholar
[48]
Zhang X, Liu X, Zhang W, Song Y. Tunable vacancy defect chemistry on free-standing carbon cathode for lithium–sulfur batteries. Green Energy Environ, 2023, 8(2): 354-359,
CrossRef Google scholar
[49]
Yang Z, Peng C, Meng R, Zu L, Feng Y, Chen B, Mi Y, Zhang C, Yang J. Hybrid anatase/rutile nanodots-embedded covalent organic frameworks with complementary polysulfide adsorption for high-performance lithium–sulfur batteries. ACS Cent Sci, 2019, 5(11): 1876-1883,
CrossRef Google scholar
[50]
Salhabi EHM, Zhao J, Wang J, Yang M, Wang B, Wang D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium–sulfur batteries. Angew Chem Int Ed Engl, 2019, 58(27): 9078-9082,
CrossRef Google scholar
[51]
Cheng H, Selloni A. Surface and subsurface oxygen vacancies in anataseTiO2and differences with rutile. Phys Rev B, 2009,
CrossRef Google scholar
[52]
Cui Z, He SA, Liu Q, Guan G, Zhang W, Xu C, Zhu J, Feng P, Hu J, Zou R, Zhu M. Graphene-like carbon film wrapped tin (II) sulfide nanosheet arrays on porous carbon fibers with enhanced electrochemical kinetics as high-performance Li and Na ion battery anodes. Adv Sci, 2020,
CrossRef Google scholar
[53]
Cao X, Chen W, Zhao P, Yang Y, Yu DG. Electrospun porous nanofibers: pore-forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers (Basel), 2022, 14(19): 3990,
CrossRef Google scholar
[54]
Liu Y, Qin X, Zhang S, Liang G, Kang F, Chen G, Li B. Fe3O4-decorated porous graphene interlayer for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces, 2018, 10(31): 26264-26273,
CrossRef Google scholar
[55]
Geng P, Wang L, Du M, Bai Y, Li W, Liu Y, Chen S, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li–S batteries: shape or size?. Adv Mater, 2021, 34(4): 2107836,
CrossRef Google scholar
[56]
Liu W, Luo C, Zhang S, Zhang B, Ma J, Wang X, Liu W, Li Z, Yang Q-H, Lv W. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries. ACS Nano, 2021, 15(4): 7491-7499,
CrossRef Google scholar
[57]
Wang R, Wu R, Yan X, Liu D, Guo P, Li W, Pan H. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium–sulfur batteries. Adv Funct Mater, 2022, 32(20): 2200424,
CrossRef Google scholar
[58]
Jia H, Nandy A, Liu M, Kulik HJ. Modeling the roles of rigidity and dopants in single-atom methane-to-methanol catalysts. J Mater Chem A, 2022, 10(11): 6193-6203,
CrossRef Google scholar
[59]
Li Z, Zhou Y, Wang Y, Lu Y-C. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries. Adv Energy Mater, 2019, 9(1): 1802207,
CrossRef Google scholar
[60]
Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv Mater, 2015, 27(35): 5203-5209,
CrossRef Google scholar
[61]
Zhang S, Ao X, Huang J, Wei B, Zhai Y, Zhai D, Deng W, Su C, Wang D, Li Y. Isolated single-atom Ni–N5 catalytic site in hollow porous carbon capsules for efficient lithium–sulfur batteries. Nano Lett, 2021, 21(22): 9691-9698,
CrossRef Google scholar
[62]
Du M, Geng P, Pei C, Jiang X, Shan Y, Hu W, Ni L, Pang H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium–sulfur batteries. Angewandte Chemie Int Ed, 2022,
CrossRef Google scholar
[63]
Sun T, Zhao X, Li B, Shu H, Luo L, Xia W, Chen M, Zeng P, Yang X, Gao P, Pei Y, Wang X. NiMoO4 nanosheets anchored on NS doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for LiS battery. Adv Func Mater, 2021, 31(25): 2101285,
CrossRef Google scholar
[64]
Dong K, Osenberg M, Sun F, Markötter H, Jafta CJ, Hilger A, Arlt T, Banhart J, Manke I. Non-destructive characterization of lithium deposition at the Li/separator and Li/carbon matrix interregion by synchrotron X-ray tomography. Nano Energy, 2019, 62: 11-19,
CrossRef Google scholar
Funding
China Scholarship Council(202006630007); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(LK1702); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (4212)

Accesses

Citations

Detail

Sections
Recommended

/