Mesoporous Nanofibers from Extended Electrospinning Technique

Pengpeng Qiu, Richeng Jin, Younggyu Son, Anqi Ju, Wan Jiang, Lianjun Wang, Wei Luo

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (3) : 658-685. DOI: 10.1007/s42765-024-00379-8
Review

Mesoporous Nanofibers from Extended Electrospinning Technique

Author information +
History +

Abstract

One-dimensional (1D) mesoporous nanofibers (NFs) have recently attracted tremendous interest in different fields, in virtue of their mesoporous structure and 1D geometry. However, conventional electrospinning, as a versatile approach for producing 1D nanostructures, can only fabricate solid NFs without pores or with a microporous structure. In this review, we focus on the extensions of the electrospinning technique to create 1D mesoporous fibrous structures, which can be categorized into: (i) foaming-assisted, (ii) phase separation-induced, (iii) soft-templated, and (iv) monomicelle-directed approaches. Special focus is on the synthesis strategies of 1D mesoporous NFs, and their underlying mechanisms, with looking into the control over pore sizes, pore structures, and functionalities. Moreover, the structure-related performances of mesoporous NFs in photocatalysis, sensing, and energy-related fields are discussed. Finally, the potential challenges for the future development of 1D mesoporous fibers are examined from the viewpoint of their synthetic strategies and applications.

Keywords

Nanofibers / Electrospinning / Mesoporous / Soft-templated / Monomicelles

Cite this article

Download citation ▾
Pengpeng Qiu, Richeng Jin, Younggyu Son, Anqi Ju, Wan Jiang, Lianjun Wang, Wei Luo. Mesoporous Nanofibers from Extended Electrospinning Technique. Advanced Fiber Materials, 2024, 6(3): 658‒685 https://doi.org/10.1007/s42765-024-00379-8

References

[1.]
Zhao TC, Elzatahry A, Li XM, Zhao DY. Single-micelle-directed synthesis of mesoporous materials. Nat Rev Mater, 2019, 4: 775-791.
CrossRef Google scholar
[2.]
Zhao TC, Chen L, Wang PY, Li BH, Lin RF, AlKhalaf AA, Hozzein WN, Zhang F, Li XM, Zhao DY. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat Commun, 2019, 10: 4387.
CrossRef Google scholar
[3.]
Li W, Liu J, Zhao DY. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater, 2016, 1: 16023.
CrossRef Google scholar
[4.]
Kong B, Tang J, Zhang YY, Jiang T, Gong XG, Peng CX, Wei J, Yang JP, Wang YC, Wang XB, Zheng GF, Selomulya C, Zhao DY. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat Chem, 2016, 8: 171-178.
CrossRef Google scholar
[5.]
Walcarius A. Mesoporous materials and electrochemistry. Chem Soc Rev, 2013, 42: 4098-4140.
CrossRef Google scholar
[6.]
Perego C, Millini R. Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev, 2013, 42: 3956-3976.
CrossRef Google scholar
[7.]
Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. Mesoporous materials for clean energy technologies. Chem Soc Rev, 2014, 43: 7681-7717.
CrossRef Google scholar
[8.]
Wang J, Ma QQ, Wang YQ, Li ZH, Li ZH, Yuan Q. New insights into the structure–performance relationships of mesoporous materials in analytical science. Chem Soc Rev, 2018, 47: 8766-8803.
CrossRef Google scholar
[9.]
Qiu PP, Ma B, Hung CT, Li W, Zhao DY. Spherical mesoporous materials from single to multilevel architectures. Acc Chem Res, 2019, 52: 2928-2938.
CrossRef Google scholar
[10.]
Lan K, Xia Y, Wang RC, Zhao ZW, Zhang W, Zhang XM, Elzatahry A, Zhao DY. Confined interfacial monomicelle assembly for precisely controlled coating of single-layered titania mesopores. Matter, 2019, 1: 527-538.
CrossRef Google scholar
[11.]
Peng L, Hung CT, Wang SW, Zhang XM, Zhu XH, Zhao ZW, Wang CY, Tang Y, Li W, Zhao DY. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J Am Chem Soc, 2019, 141: 7073-7080.
CrossRef Google scholar
[12.]
Duan LL, Hung CT, Wang JX, Wang CY, Ma B, Zhang W, Ma YZ, Zhao ZW, Yang CC, Zhao TC, Peng L, Liu D, Zhao DY. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew Chem Int Ed, 2022, 61.
CrossRef Google scholar
[13.]
Zhu XH, Xia Y, Zhang XM, Al-Khalaf AA, Zhao TC, Xu JX, Peng L, Hozzein WN, Li W, Zhao DY. Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. J Mater Chem A, 2019, 7: 8975-8983.
CrossRef Google scholar
[14.]
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai YY. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev, 2020, 49: 4681-4736.
CrossRef Google scholar
[15.]
Duan LL, Wang CY, Zhang W, Ma B, Deng YH, Li W, Zhao DY. Interfacial assembly and applications of functional mesoporous materials. Chem Rev, 2021, 121: 14349-14429.
CrossRef Google scholar
[16.]
Yu J, Yu H, Cheng B, Zhao X, Zhang Q. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. J Photochem Photobio A: Chem, 2006, 182: 121-127.
CrossRef Google scholar
[17.]
Wang H, Deng J, Chen Y, Xu F, Wei Z, Wang Y. Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors. Nano Res, 2016, 9: 2672-2680.
CrossRef Google scholar
[18.]
Wang K, Birjukovs P, Erts D, Phelan R, Morris M, Zhou H, Holmes JD. Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres. J Mater Chem, 2009, 19: 1331-1338.
CrossRef Google scholar
[19.]
Zhang Y, Zhou K, Zhang LF, Wu HD, Guo J. Synthesis of mesoporous γ-Al2O3 by using cellulose nanofiber as template for hydrodesulfurization of dibenzothiophene. Fuel, 2019, 253: 431-440.
CrossRef Google scholar
[20.]
Li XY, Chen WC, Qian QR, Huang HT, Chen YM, Wang ZQ, Chen QH, Yang J, Li J, Mai YW. Electrospinning-based strategies for battery materials. Adv Energy Mater, 2021, 11: 2000845.
CrossRef Google scholar
[21.]
Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun NFS: methods, materials, and applications. Chem Rev, 2019, 119: 5298-5415.
CrossRef Google scholar
[22.]
Shi S, Si YF, Han YT, Wu T, Iqbal MI, Fei B, Li RKY, Hu JL, Qu JP. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv Mater, 2022, 34: 2107938.
CrossRef Google scholar
[23.]
Dou YB, Zhang WJ, Kaiser A. Electrospinning of metal–organic frameworks for energy and environmental applications. Adv Sci, 2020, 7: 1902590.
CrossRef Google scholar
[24.]
Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K. Electrospinning to forcespinning™. Mater Today, 2010, 13: 12-14.
CrossRef Google scholar
[25.]
Tebyetekerwa M, Ramakrishna S. What is next for electrospinning?. Matter, 2020, 2: 279-283.
CrossRef Google scholar
[26.]
Li CP, Qiu M, Li RL, Li X, Wang MX, He JB, Lin GG, Xiao LR, Qian QR, Chen QH, Wu JX, Li XY, Mai YW, Chen YM. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater, 2022, 4: 43-65.
CrossRef Google scholar
[27.]
Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of biomedical NFs/nanomembranes: effects of process parameters. Polymers, 2022, 14: 3719.
CrossRef Google scholar
[28.]
Saleh M, Demir D, Ozay Y, Yalvac M, Bolgen N, Dizge N. Fabrication of basalt embedded composite fiber membrane using electrospinning method and response surface methodology. J Appl Polym Sci, 2021, 138: 50599.
CrossRef Google scholar
[29.]
Rasekh A, Raisi A. Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Sep Purif Technol, 2021, 275.
CrossRef Google scholar
[30.]
Yang YT, Du YZ, Zhang J, Zhang H, Guo B. Structural and functional design of electrospun NFs for hemostasis and wound healing. Adv Fiber Mater, 2022, 4: 1027-1057.
CrossRef Google scholar
[31.]
Liu DP, Shi QQ, Jin S, Shao YL, Huang J. Self-assembled core-shell structured organic NFs fabricated by single-nozzle electrospinning for highly sensitive ammonia sensors. InfoMat, 2019, 1: 525-532.
CrossRef Google scholar
[32.]
Sadeghi SAM, Borhani S, Zadhoush A, Dinari M. Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer, 2020, 186.
CrossRef Google scholar
[33.]
Hou HL, Wang L, Gao FM, Wei GD, Tang B, Yang WY, Wu T. General strategy for fabricating thoroughly mesoporous NFs. J Am Chem Soc, 2014, 136: 16716-16719.
CrossRef Google scholar
[34.]
Ren XL, Hou HL, Liu ZX, Gao FM, Zheng JJ, Wang L, Li WG, Ying PZ, Yang Wy WT. Shape-enhanced photocatalytic activities of thoroughly mesoporous ZnO NFs. Small, 2016, 12: 4007-4017.
CrossRef Google scholar
[35.]
Liu HB, Hou HL, Gao FM, Yao XH, Yang WY. Tailored fabrication of thoroughly mesoporous BiVO4 NFs and their visible-light photocatalytic activities. ACS Appl Mater Interfaces, 2016, 8: 1929-1936.
CrossRef Google scholar
[36.]
Hou HL, Gao FM, Shang MH, Wang L, Zheng JJ, Liu Q, Yang ZB, Xu JH, Yang WY. Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous NFs. J Mater Sci Mater Electron, 2016, 28: 3796-3805.
CrossRef Google scholar
[37.]
Hou HL, Wang L, Gao FM, Yang XF, Yang WY. BiVO4@TiO2 core–shell hybrid mesoporous NFs towards efficient visible-light-driven photocatalytic hydrogen production. J Mater Chem C, 2019, 7: 7858-7864.
CrossRef Google scholar
[38.]
Hou HL, Shang MH, Gao FM, Wang L, Liu Q, Zheng JJ, Yang ZB, Yang WY. Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous NFs. ACS Appl Mater Interfaces, 2016, 8: 20128-20137.
CrossRef Google scholar
[39.]
Hou HL, Gao FM, Wang L, Shang MH, Yang ZB, Zheng JJ, Yang WY. Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 NFs for visible-light-driven hydrogen evolution. J Mater Chem A, 2016, 4: 6276-6281.
CrossRef Google scholar
[40.]
Rezabeigi E, Wood-Adams PM, Demarquette NR. Complex morphology formation in electrospinning of binary and ternary poly(lactic acid) solutions. Macromolecules, 2018, 51: 4094-4107.
CrossRef Google scholar
[41.]
Pai CL, Boyce MC, Rutledge GC. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Abstr Pap Am Chem Soc, 2009, 238:215-232.
[42.]
Lin JY, Ding B, Yu JY, Hsieh Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces, 2010, 2: 521-528.
CrossRef Google scholar
[43.]
Bae HS, Haider A, Selim KMK, Kang DY, Kim EJ, Kang IK. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res, 2013, 20: 158.
CrossRef Google scholar
[44.]
Dayal P, Liu J, Kumar S, Kyu T. Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules, 2007, 40: 7689-7694.
CrossRef Google scholar
[45.]
Celebioglu A, Uyar T. Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett, 2011, 65: 2291-2294.
CrossRef Google scholar
[46.]
McCann JT, Marquez M, Xia YN. Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc, 2006, 128: 1436-1437.
CrossRef Google scholar
[47.]
Pai CL, Boyce MC, Rutledge GC. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules, 2009, 42: 2102-2114.
CrossRef Google scholar
[48.]
Fashandi H, Ghomi A. Interplay of phase separation and physical gelation in morphology evolution within nanoporous fibers electrospun at high humidity atmosphere. Ind Eng Chem Res, 2015, 54: 240-253.
CrossRef Google scholar
[49.]
Lu P, Xia YN. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir, 2013, 29: 7070-7078.
CrossRef Google scholar
[50.]
Fashandi H, Karimi M. Comparative studies on the solvent quality and atmosphere humidity for electrospinning of nanoporous polyetherimide fibers. Ind Eng Chem Res, 2014, 53: 235-245.
CrossRef Google scholar
[51.]
Shu DK, Xi P, Li SW, Li CC, Wang XQ, Cheng BW. Morphologies and properties of pet nano porous luminescence fiber: oil absorption and fluorescence-indicating functions. ACS Appl Mater Interfaces, 2018, 10: 2828-2836.
CrossRef Google scholar
[52.]
Qi ZH, Yu H, Chen YM, Zhu MF. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Mater Lett, 2009, 63: 415-418.
CrossRef Google scholar
[53.]
Yu XL, Xiang HF, Long YH, Zhao N, Zhang XL, Xu JA. Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Mater Lett, 2010, 64: 2407-2409.
CrossRef Google scholar
[54.]
Nayani K, Katepalli H, Sharma CS, Sharma A, Patil S, Venkataraghavan R. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res, 2012, 51: 1761-1766.
CrossRef Google scholar
[55.]
Chen PY, Tung SH. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules, 2017, 50: 2528-2534.
CrossRef Google scholar
[56.]
Yang PD, Zhao DY, Chmelka BF, Stucky GD. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem Mater, 1998, 10: 2033-2036.
CrossRef Google scholar
[57.]
Chuang YJ, Liao JD, Chen LJ. Polyvinylbutyral-assisted synthesis and characterization of mesoporous silica NFs by electrospinning route. J Compos Mater, 2011, 46: 227-236.
CrossRef Google scholar
[58.]
He HY, Wang J, Li X, Zhang XW, Weng WJ, Han GR. Silica NFs with controlled mesoporous structure via electrospinning: from random to orientated. Mater Lett, 2013, 94: 100-103.
CrossRef Google scholar
[59.]
Ma ZJ, Ji HJ, Teng Y, Dong GP, Zhou JJ, Tan DZ, Qiu JR. Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci, 2011, 358: 547-553.
CrossRef Google scholar
[60.]
Saha J, De G. Highly ordered cubic mesoporous electrospun SiO2 NFs. Chem Commun, 2013, 49: 6322-6324.
CrossRef Google scholar
[61.]
Taha AA, Qiao JL, Li FT, Zhang BR. Preparation and application of amino functionalized mesoporous NFs membrane via electrospinning for adsorption of Cr3+ from aqueous solution. J Environ Sci, 2012, 24: 610-616.
CrossRef Google scholar
[62.]
Wang HQ, Zhang CF, Chen ZX, Liu HK, Guo ZP. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon, 2015, 81: 782-787.
CrossRef Google scholar
[63.]
An GH, Koo BR, Ahn HJ. Activated mesoporous carbon NFs fabricated using water etching-assisted templating for high-performance electrochemical capacitors. Phys Chem Chem Phys, 2016, 18: 6587-6594.
CrossRef Google scholar
[64.]
Zhang W, Zhu R, Ke L, Liu XZ, Liu B, Ramakrishna S. Anatase mesoporous TiO2 NFs with high surface area for solid-state dye-sensitized solar cells. Small, 2010, 6: 2176-2182.
CrossRef Google scholar
[65.]
Nguyen TA, Jun TS, Rashid M, Kim YS. Synthesis of mesoporous tungsten oxide NFs using the electrospinning method. Mater Lett, 2011, 65: 2823-2825.
CrossRef Google scholar
[66.]
Shen JY, Li ZH, Wu YN, Zhang BR, Li FT. Dendrimer-based preparation of mesoporous alumina NFs by electrospinning and their application in dye adsorption. Chem Eng J, 2015, 264: 48-55.
CrossRef Google scholar
[67.]
Li ZP, Fan YJ, Zhan JH. In2O3 NFs and nanoribbons: preparation by electrospinning and their formaldehyde gas-sensing properties. Eur J Inorg Chem, 2010, 2010: 3348-3353.
CrossRef Google scholar
[68.]
Lin YP, Chen YY, Lee YC, Chen-Yang YW. Effect of wormhole-like mesoporous anatase TiO2 NFs prepared by electrospinning with ionic liquid on dye-sensitized solar cells. J Phys Chem C, 2012, 116: 13003-13012.
CrossRef Google scholar
[69.]
Su Y, Fu B, Yuan GL, Ma M, Jin HY, Xie SH, Li JY. Three dimensional mesoporous gamma-Fe2O3@carbon NFs network as high performance anode material for lithium- and sodium-ion batteries. Nanotechnol, 2019, 31.
CrossRef Google scholar
[70.]
Wang Y, Li W, Jiao XL, Chen DR. Electrospinning preparation and adsorption properties of mesoporous alumina fibers. J Mater Chem A, 2013, 1: 10720-10726.
CrossRef Google scholar
[71.]
Yu D, Chen CG, Xie SH, Liu YY, Park K, Zhou XY, Zhang QF, Li JY, Cao GZ. Mesoporous vanadium pentoxide NFs with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ Sci, 2011, 4: 858-861.
CrossRef Google scholar
[72.]
Taek Jung K, Chu YH, Haam S, Gun SY. Synthesis of mesoporous silica fiber using spinning method. J Non Cryst Solids, 2002, 298: 193-201.
CrossRef Google scholar
[73.]
Choi J, Ide A, Truong YB, Kyratzis IL, Caruso RA. High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent. J Mater Chem A, 2013, 1: 5847-5853.
CrossRef Google scholar
[74.]
Wang J, Shen LF, Li HS, Ding B, Nie P, Dou H, Zhang XG. Mesoporous Li4Ti5O12/carbon NFs for high-rate lithium-ion batteries. J Alloys Compd, 2014, 587: 171-176.
CrossRef Google scholar
[75.]
Huang YP, Miao YE, Tjiu WW, Liu TX. High-performance flexible supercapacitors based on mesoporous carbon NFs/Co3O4/MnO2 hybrid electrodes. RSC Adv, 2015, 5: 18952-18959.
CrossRef Google scholar
[76.]
Irani M, Keshtkar AR, Moosavian MA. Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite NFs prepared by sol–gel/electrospinning. Chem Eng J, 2012, 200–202: 192-201.
CrossRef Google scholar
[77.]
Pradhan AC, Senthamizhan A, Uyar T. Electrospun mesoporous composite CuO−Co3O4/N- TiO2 NFs as efficient visible light photocatalysts. ChemistrySelect, 2017, 2: 7031-7043.
CrossRef Google scholar
[78.]
Xie JS, Wu QS, Zhao DF. Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties. Carbon, 2012, 50: 800-807.
CrossRef Google scholar
[79.]
Yu G, Zhu LY, Wang XQ, Liu JR, Xu D. Fabrication of silica-supported ZrO2 mesoporous fibers with high thermal stability by sol–gel method through a controlled hydrolysis–condensation process. Micropor Mesopor Mater, 2010, 130: 189-196.
CrossRef Google scholar
[80.]
Qiu PP, Xu BQ, Sun ZQ, Zhao T, Fan YC, Zhao YY, Yang JP, Wang LJ, Jiang W, Zhu XH, Li XP, Zhu GH, Fang Y, Zhang ZL, Gu CF, Luo W. Oriented assembly of monomicelles in beam stream enabling bimodal mesoporous metal oxide nanofibers. Sci China Mater, 2021, 64: 2486-2496.
CrossRef Google scholar
[81.]
Zou YD, Zhou XR, Zhu YH, Cheng XW, Zhao DY, Deng YH. sp2-hybridized carbon-containing block copolymer templated synthesis of mesoporous semiconducting metal oxides with excellent gas sensing property. Acc Chem Res, 2019, 52: 714-725.
CrossRef Google scholar
[82.]
Pastoriza-Santos I, Liz-Marzán LM. Formation of PVP-protected metal nanoparticles in DMF. Langmuir, 2002, 18: 2888-2894.
CrossRef Google scholar
[83.]
Wu DS, Cao MN, Cao R. Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation. Nano Res, 2019, 12: 2628-2633.
CrossRef Google scholar
[84.]
Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater, 1999, 11: 2813-2826.
CrossRef Google scholar
[85.]
Qiu PP, Yao Y, Li W, Sun Y, Jiang Z, Mei BB, Gu L, Zhang QH, Shang TT, Yu XQ, Yang JP, Fang Y, Zhu GH, Zhang ZL, Zhu XH, Zhao T, Jiang W, Fan YC, Wang LJ, Ma B, Liu LL, Yu Y, Luo W. Sub-nanometric manganous oxide clusters in nitrogen doped mesoporous carbon nanosheets for high-performance lithium-sulfur batteries. Nano Lett, 2021, 21: 700-708.
CrossRef Google scholar
[86.]
Ordanini S, Cellesi F. Complex polymeric architectures self-assembling in unimolecular micelles: preparation, characterization and drug nanoencapsulation. Pharm, 2018, 10:209
[87.]
Zhu YH, Zhao Y, Ma JH, Cheng XW, Xie J, Xu PC, Liu HQ, Liu HP, Zhang HJ, Wu MH, Elzatahry AA, Alghamdi A, Deng YH, Zhao DY. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc, 2017, 139: 10365-10373.
CrossRef Google scholar
[88.]
Gu CF, Fan XS, Zhu GH, Fan YC, Wang HF, Zhao T, Xiao Q, Fang Y, Li XP, Jiang W, Wang LJ, Qiu PP, Luo W. Self-organization of unimolecular micelles in beam stream for functional mesoporous metal oxide nanofibers. Fundametnal Res, 2021, 2: 776-782.
CrossRef Google scholar
[89.]
Chattopadhyay S, Bysakh S, Mishra PM, De G. In situ synthesis of mesoporous TiO2 NFs surface-decorated with AuAg alloy nanoparticles anchored by heterojunction exhibiting enhanced solar active photocatalysis. Langmuir, 2019, 35: 14364-14375.
CrossRef Google scholar
[90.]
Lin JY, Shang YW, Ding B, Yang JM, Yu JY, Al-Deyab SS. Nanoporous polystyrene fibers for oil spill cleanup. Mar Pollut Bull, 2012, 64: 347-352.
CrossRef Google scholar
[91.]
Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces, 2012, 4: 3207-3212.
CrossRef Google scholar
[92.]
Topuz F, Abdulhamid MA, Nunes SP, Szekely G. Hierarchically porous electrospun nanofbrous mats produced from intrinsically microporous fuorinated polyimide for the removal of oils and non-polar solvents. Environ Sci Nano, 2020, 7: 1365-1372.
CrossRef Google scholar
[93.]
Vu D, Li Z, Zhang H, Wang W, Wang Z, Xu X, Dong B, Wang C. Adsorption of Cu(II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J Colloid Interf Sci, 2012, 367: 429-435.
CrossRef Google scholar
[94.]
Xu C, Shi S, Wang X, Zhou H, Wang L, Zhu L, Zhang G, Xu D. Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J Hazardous Mater, 2020, 381.
CrossRef Google scholar
[95.]
Huang C, Thomas NL. Fabrication of porous fibers via electrospinning: strategies and applications. Polym Rev, 2019, 60: 595.
CrossRef Google scholar
[96.]
Yan JH, Dong KQ, Zhang YY, Wang X, Aboalhassan AA, Yu JY, Ding B. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat Commun, 2019, 10: 5584.
CrossRef Google scholar
[97.]
Peng C, Zhang JL, Xiong ZG, Zhao BH, Liu PC. Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropor Mesopor Mater, 2015, 215: 133-142.
CrossRef Google scholar
[98.]
Li ZY, Zhang HN, Zheng W, Wang W, Huang HM, Wang C, MacDiarmid AG, Wei Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun NFs. J Am Chem Soc, 2008, 130: 5036-5037.
CrossRef Google scholar
[99.]
Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) NFs based interface for biosensing. ACS Appl Mater Interfaces, 2014, 6: 2516-2527.
CrossRef Google scholar
[100.]
Yang DY, Liu X, Jin Y, Zhu Y, Zeng DD, Jiang XY, Ma HW. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays. Biomacromol, 2009, 10: 3335-3340.
CrossRef Google scholar
[101.]
Tsou PH, Chou CK, Saldana SM, Hung MC, Kameoka J. The fabrication and testing of electrospun silica NFs membranes for the detection of proteins. Nanotechnol, 2008, 19.
CrossRef Google scholar
[102.]
Yang G, Kampstra KL, Abidian MR. High Performance conducting polymer NFs biosensors for detection of biomolecules. Adv Mater, 2014, 26: 4954-4960.
CrossRef Google scholar
[103.]
Zhou CY, Xu L, Song J, Xing RQ, Xu S, Liu DL, Song HW. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep, 2014, 4: 7382.
CrossRef Google scholar
[104.]
Wang ZJ, Li ZY, Jiang TT, Xu XR, Wang C. Ultrasensitive hydrogen sensor based on Pd(0)-loaded SnO2 electrospun NFs at room temperature. ACS Appl Mater Interfaces, 2013, 5: 2013-2021.
CrossRef Google scholar
[105.]
Gao J, Wang LL, Kan K, Xu S, Jing LQ, Liu SQ, Shen PK, Li L, Shi KY. One-step synthesis of mesoporous Al2O3–In2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature. J Mater Chem A, 2014, 2: 949-956.
CrossRef Google scholar
[106.]
Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, Tang Y, Yang B. Electrospinning: a facile method to disperse fluorescent quantum dots in nfs without förster resonance energy transfer. Adv Funct Mater, 2007, 17: 3650-3656.
CrossRef Google scholar
[107.]
Wu H, Sun Y, Lin DD, Zhang R, Zhang C, Pan W. GaN NFs based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater, 2009, 21: 227-231.
CrossRef Google scholar
[108.]
Mali SS, Kim H, Jang WY, Park HS, Patil PS, Hong CK. Novel synthesis and characterization of mesoporous ZnO NFs by electrospinning technique. ACS Sustain Chem Eng, 2013, 1: 1207-1213.
CrossRef Google scholar
[109.]
Hsu KC, Liao JD, Yang JR, Fu YS. Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnS4 mesoporous fibers by an electrospinning process. CrystEngComm, 2013, 15: 4303-4308.
CrossRef Google scholar
[110.]
Chattopadhyay S, Maiti S, Das I, Mahanty S, De G. Electrospun TiO2-rGO composite NFs with ordered mesopores by molecular level assembly: a high performance anode material for Lithium-Ion batteries. Adv Mater Interfaces, 2016, 3: 1600761.
CrossRef Google scholar
[111.]
Cao ZH, Wang CQ, Chen J. Novel mesoporous carbon NFs prepared via electrospinning method as host materials for Li-S battery. Mater Lett, 2018, 225: 157-160.
CrossRef Google scholar
[112.]
An GH, Lee DY, Ahn HJ. Tunneled mesoporous carbon NFs with embedded ZnO nanoparticles for ultrafast lithium storage. ACS Appl Mater Interfaces, 2017, 9: 12478-12485.
CrossRef Google scholar
[113.]
Cheong JY, Jung JW, Youn DY, Kim C, Yu S, Cho SH, Yoon KR, Kim ID. Mesoporous orthorhombic Nb2O5 NFs as pseudocapacitive electrodes with ultra-stable Li storage characteristics. J Power Sources, 2017, 360: 434-442.
CrossRef Google scholar
[114.]
Gong ZJ, Wu QX, Wang F, Li X, Fan XP, Yang H, Luo ZK. A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries. RSC Adv, 2016, 6: 37443-37451.
CrossRef Google scholar
[115.]
He B, Wang J, Fan YQ, Jiang YL, Zhai YJ, Wang Y, Huang QS, Dang F, Zhang ZD, Wang N. Mesoporous CoO/Co–N–C NFs as efficient cathode catalysts for Li–O2 batteries. J Mater Chem A, 2018, 6: 19075-19084.
CrossRef Google scholar
[116.]
Hu S, Chen W, Uchaker E, Zhou J, Cao GZ. Mesoporous carbon NFs embedded with MoS2 nanocrystals for extraordinary Li-ion storage. Chem, 2015, 21: 18248-18257.
CrossRef Google scholar
[117.]
Lee DJ, Lee H, Ryou MH, Han GB, Lee JN, Song JC, Choi J, Cho YK, Lee YM, Park JK. Electrospun three-dimensional mesoporous silicon NFs as an anode material for high-performance lithium secondary batteries. ACS Appl Mater Interfaces, 2013, 5: 12005-12010.
CrossRef Google scholar
[118.]
Li DH, Lv CX, Liu L, Xia YZ, She XL, Guo SJ, Yang DJ. Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon NFs for efficient catalysis and energy storage. ACS Cent Sci, 2015, 1: 261-269.
CrossRef Google scholar
[119.]
Li XH, Zhou BM, Wang W, Xu ZW, Li N, Kuang LY, Li CY, Wei M, Hj Fu, Lv HM. Superior cyclability of branch-like TiO2 embedded on the mesoporous carbon NFs as free-standing anodes for lithium-ion batteries. J Alloys Compd, 2017, 706: 103-109.
CrossRef Google scholar
[120.]
Lou LZ, Kong XZ, Zhu T, Liang LJD, Liu SQ, F, Cao GZ, Pan AQ. . Facile fabrication of interconnected-mesoporous T-Nb2O5 NFs as anodes for lithium-ion batteries. Sci China Mater, 2018, 62: 465-473.
CrossRef Google scholar
[121.]
Li YZ, Wang HW, Wang LB, Mao ZF, Wang R, He BB, Gong YS, Hu XL. Mesopore-induced ultrafast Na+ -storage in T-Nb2O5 /carbon NFs films toward flexible high-power Na-ion capacitors. Small, 2019, 15.
CrossRef Google scholar
[122.]
Liu H, Liu YH. 1D mesoporous NaTi2(PO4)3/carbon NFs: the promising anode material for sodium-ion batteries. Ceram Int, 2018, 44: 5813-5816.
CrossRef Google scholar
[123.]
Wang YP, Zhang YF, Shi JR, Kong XZ, Cao XX, Liang SQ, Cao GZ, Pan AQ. Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Stor Mater, 2019, 18:366-374.
[124.]
Yu ML, Yin ZL, Yan GC, Wang ZX, Guo HJ, Li GC, Liu Y, Wang JX. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon NFs. J Power Sources, 2019, 449.
CrossRef Google scholar
[125.]
Li CL, Wu MC, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C NFs with embedding FeCo alloy nanoparticles. Appl Catal B Environ, 2019, 244: 150-158.
CrossRef Google scholar
[126.]
Li CL, Zhang ZJ, Wu MC, Liu R. FeCoNi ternary alloy embedded mesoporous carbon NFs: an efficient oxygen evolution catalyst for rechargeable zinc-air battery. Mater Lett, 2019, 238: 138-142.
CrossRef Google scholar
[127.]
Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZN. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett, 2011, 11: 2905-2911.
CrossRef Google scholar
[128.]
Zhao HP, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv Sci, 2017, 4: 1700188.
CrossRef Google scholar
[129.]
Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev, 2017, 46: 6816-6854.
CrossRef Google scholar
[130.]
Bhagwan J, Rani S, Sivasankaran V, Yadav KL, Sharma Y. Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio NFs of spinel-NiMn2O4. Appl Surf Sci, 2017, 426: 913-923.
CrossRef Google scholar
[131.]
Cui CJ, Qian WZ, Yu YT, Kong CY, Yu B, Xiang L, Wei F. Highly electroconductive mesoporous graphene NFs and their capacitance performance at 4 V. J Am Chem Soc, 2014, 136: 2256-2259.
CrossRef Google scholar
[132.]
Dong WJ, Wang Z, Zhang Q, Ravi M, Yu MM, Tan YT, Liu Y, Kong LB, Kang L, Ran F. Polymer/block copolymer blending system as the compatible precursor system for fabrication of mesoporous carbon NFs for supercapacitors. J Power Sources, 2019, 419: 137-147.
CrossRef Google scholar
[133.]
Ghosh S, Yong WD, Jin EM, Polaki SR, Jeong SM, Jun H. Mesoporous carbon NFs engineered for improved supercapacitor performance. Korean J Chem Eng, 2019, 36: 312-320.
CrossRef Google scholar
[134.]
Jiang ZM, Xu TT, Dai SG, Yan CC, Ma CY, Wang XC, Xu JM, Zhang S, Yang Y. 3D Mesoporous Ni(OH)2 /WS2 NFs with highly enhanced performances for hybrid supercapacitors. Energy Technol, 2019, 7: 1800476.
CrossRef Google scholar
[135.]
Kim BH, Kim CH, Lee DG. Mesopore-enriched activated carbon NFs web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem, 2016, 760: 64-70.
CrossRef Google scholar
[136.]
Kim BH, Yang KS, Ferraris JP. Highly conductive, mesoporous carbon NFs web as electrode material for high-performance supercapacitors. Electrochim Acta, 2012, 75: 325-331.
CrossRef Google scholar
[137.]
Liang QH, Ye L, Xu Q, Huang ZH, Kang FY, Yang QH. Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon NFs with improved capacitive performance. Carbon, 2015, 94: 342-348.
CrossRef Google scholar
[138.]
Liu ZY, Fu DY, Liu FF, Han GY, Liu CX, Chang YZ, Xiao YM, Li MY, Li SD. Mesoporous carbon NFs with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon, 2014, 70: 295-307.
CrossRef Google scholar
[139.]
Ma C, Sheng J, Ma CL, Wang RR, Liu JQ, Xie ZY, Shi JL. High-performanced supercapacitor based mesoporous carbon NFs with oriented mesopores parallel to axial direction. Chem Eng J, 2016, 304: 587-593.
CrossRef Google scholar
[140.]
Tan J, Han YL, He L, Dong YX, Xu X, Liu DN, Yan HW, Yu Q, Huang CY, Mai LQ. In situ nitrogen-doped mesoporous carbon NFs as flexible freestanding electrodes for high-performance supercapacitors. J Mater Chem A, 2017, 5: 23620-23627.
CrossRef Google scholar
[141.]
Zeng Y, Li XY, Jiang SH, He SJ, Fang H, Hou HQ. Free-standing mesoporous electrospun carbon NFs webs without activation and their electrochemical performance. Mater Lett, 2015, 161: 587-590.
CrossRef Google scholar
[142.]
Wang CH, Kaneti YV, Bando Y, Lin JJ, Liu C, Li JS, Yamauchi Y. Metal–organic framework-derived one-dimensional porous or hollow carbon-based NFs for energy storage and conversion. Mater Horizons, 2018, 5: 394-407.
CrossRef Google scholar
[143.]
Lee G, Seo YD, Jang J. ZnO quantum dot-decorated carbon NFs derived from electrospun ZIF-8/PVA NFs for high-performance energy storage electrodes. Chem Comm, 2017, 53: 11441-11444.
CrossRef Google scholar
[144.]
Sun YM, Sills RB, Hu XL, Seh ZW, Xiao X, Xu HH, Luo W, Jin HY, Xin Y, Li TQ, Zhang ZL, Zhou J, Cai W, Huang YH, Cui Y. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett, 2015, 15: 3899-3906.
CrossRef Google scholar
[145.]
Tebyetekerwa M, Wang XP, Wu YZ, Yang SY, Zhu MF, Ramakrishna S. Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. J Mater Chem A, 2017, 5: 21114.
CrossRef Google scholar
Funding
National Natural Science Foundation of China(52173233)

Accesses

Citations

Detail

Sections
Recommended

/